DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139-4307

Donald R. Sadoway John F. Elliott Professor of Materials Chemistry MacVicar Faculty Fellow

3.53 ELECTROCHEMICAL PROCESSING OF MATERIALS

February 6, 2001

PROBLEM SET 1

due February 15

The e.m.f. of the MnCl₂ formation cell has been measured. For <u>pure</u> liquid MnCl₂ the standard potentials were $\begin{array}{c|c} T(^{\circ}C) & \underline{E^{\circ}(mV)} \\ \hline 671 & 1867 \\ 708 & 1852 \\ 743 & 1837 \\ 779 & 1822 \\ 813 & 1803 \\ Mn(s) \mid MnCl_2(l) \mid C, Cl_2(g, 1 atm.) \end{array}$

For a solution of 1 mole % MnCl₂, 24.75 mole % NaCl, 74.25 mole % CsCl, the potentials were

<u>T (C°)</u>	<u>E (mV)</u>
754	2332
713	2342
663	2356
689	2349
646	2360
Mn (s) MnCl ₂ - NaCl - CsCl (l)) C, Cl ₂ (g, 1 atm.)

- (a) Plot E° and E versus T and draw the least-squares lines through the points.
- (b) Calculate the temperature dependence of ΔG° in the temperature range 700-800°C for the reaction Mn (s) + Cl₂ (g, 1 atm.) = MnCl₂ (l). What are the values of ΔH° and ΔS° ?
- (c) For the 1% MnCl₂ solution in 3:1 CsCl-NaCl determine the partial molar free energy of mixing MnCl₂, ΔG_{MnCl_2} , as a function of temperature. What are the values of ΔH_{MnCl_2} and ΔS_{MnCl_2} in this temperature range?
- (d)(i) Calculate a_{MnCl_2} and γ_{MnCl_2} at 650°C and 750°C. Choose pure liquid MnCl₂ as both standard state and reference state for these calculations.

- (ii) Does this solution show positive or negative deviation from ideality?
- (iii) Calculate ΔS_{MnCl_2} for an ideal "molecular" solution and compare this value with ΔS_{MnCl_2} determined in part (c) of this question. Using the value of $\Delta S_{MnCl_2}^{excess}$ comment on the structure of this melt. Keep in mind the value of ΔH_{MnCl_2} .
- (e) Plot a theoretical E vs $\log_{10}P_{Cl_2}$ curve at 700°C when the electrolyte is pure MnCl₂ and chlorine pressure varies from 1 atm. to 10^{-3} atm.
- (f) If the pure Mn electrode is exchanged for a Mn alloy, does this change the e.m.f. measured in this cell? If so, how? If not, why is this the case?