Local Buckling of Flanges

Equivalent Column (See p. 38 of L. G. Steel Manual)

$$
\begin{gathered}
\frac{2 \cdot 1.0-1.0}{6 \cdot 1.0} \cdot 2.0=0.33 \mathrm{in} . \\
+0.875 \\
.05 \\
.0625
\end{gathered}
$$

Figure 1: Distance of centroid to equivalent column to top tier.

Centroid Calculations

$$
\begin{gathered}
0.875+(0.33-0.05)=1.055 \\
0.875 \times \frac{0.05}{2}=0.022 \\
.0625 \times 0.19=0.0119 \\
\frac{0.022+0.0119}{1.055}=.0322 \\
\begin{array}{r}
A=(.815 \times .05)+(.0625 \times .28)=.0612 \\
y_{0}= \\
=.0322-.025=.007 \\
= \\
=\frac{8}{3 E I}+\frac{26.5}{2 E I}=\frac{24.1}{2 E I} \\
E=10 \times 10^{6} \\
I=\frac{2^{2}(.875)}{12} \cdot(0.0625)^{3}=20.3 \times 10^{-6}
\end{array}
\end{gathered}
$$

$$
\begin{gathered}
D=\frac{44.1}{10 \cdot 20.3}=.217 \\
\beta=D^{-1}=4.61 \\
T_{0}=\frac{2}{2+\left(2.4 \cdot y_{0}\right)}=\frac{2}{2.02}=0.99 \\
P_{\text {cr }}=T_{0} \sqrt{4 \beta E I} \\
=0.99 \sqrt{4 \cdot 4.61 \cdot 10 \cdot 20.3} \\
= \\
\\
\\
\sigma_{c r}=P_{c r} / A=60.4 / .0612=986 \mathrm{psi} \\
\\
M=P \cos \alpha \frac{L^{\prime}}{L}\left(L-L^{\prime}\right)
\end{gathered}
$$

$\underline{\text { Leaning Ladder: For } \mathrm{L}=180^{\prime \prime}, \mathrm{L}^{\prime}=132^{\prime \prime}, \cos \alpha=0.34, ~}$

$$
\begin{aligned}
& M=P \cdot 0.34 \cdot \frac{132}{180} \cdot 48=12.0 \cdot P \\
& \sigma
\end{aligned} \begin{aligned}
\sigma & =\frac{P}{A} \sin \alpha+\frac{12 P C}{I} \\
& =P\left(\frac{0.94}{0.414}+\frac{12 \cdot 1}{0.229}\right) \\
& =7.52 \cdot P
\end{aligned}
$$

$$
P=\frac{\sigma_{c r}}{7.52}=132 \mathrm{lbs} ., \text { placed 11' up the ladder }
$$

