Solutions to Problem Set 1

Part I/Part II
Part I(20 points)

(a)	(2 points)	p. 57,	Section 2.2,	Problem 1	
(b)	(2 points)	p. 62 ,	Section 2.3,	Problem 1	
(c)	(2 points)	p. 62,	Section 2.3,	Problem 28	
(d)	(2 points)	p. 62 ,	Section 2.3,	Problem 36	You may assume $x>0$.
(e)	(2 points)	p. 68 ,	Section 2.4,	Problem 8	"Speed" is different from "velocity".
(f)	(2 points)	p. 73	Section 2.5,	Problem 4	
(g)	(2 points)	p. 73,	Section 2.5,	Problem 6	
(h)	(2 points)	p. 73	Section 2.5,	Problem 14	
(i)	(2 points)	p. 87,	Section 3.1,	Problem 5	
(j)	(2 points)	p. 91,	Section 3.2,	Problem 30	

Solution (a) By Equation (4) on p. 54, the slope of the tangent line to the parabola at $\left(x_{0}, y_{0}\right)$ is $2 x_{0}$. Thus the equation of the tangent line is,

$$
\left(y-y_{0}\right)=2 x_{0}\left(x-x_{0}\right), \text { or equivalently } y=2 x_{0} x-x_{0}^{2} .
$$

(a). At the point $\left(x_{0}, y_{0}\right)=(-2,4)$, the tangent line is,

$$
y=-4 x-4
$$

(b). Since the slope is $2 x_{0}$, the slope is 8 when x_{0} equals 4 . Plugging in, y_{0} equals $x_{0}^{2}=(4)^{2}$, which is 16 . Thus the tangent line with slope 8 is,

$$
y=8 x-16
$$

(c). If x_{0} is zero, the tangent line has equation $y=0$, i.e., the tangent line is the x-axis. Thus the tangent line does not have a well-defined x-intercept. Therefore assume that x_{0} is nonzero. The x-intercept of the tangent line is the value x_{1} such that y is 0 . Plugging in, this gives the equation,

$$
0=2 x_{0} x_{1}-x_{0}^{2}
$$

Simplifying, this is $2 x_{0} x_{1}=x_{0}^{2}$. Since x_{0} is nonzero by hypothesis, also $2 x_{0}$ is nonzero. Dividing both side by $2 x_{0}$ gives the equation $x_{1}=x_{0} / 2$. Thus the x-intercept x_{1} equals 2 if and only if x_{0} equals $2 x_{1}=2 \times 2=4$. As computed in (b), the equation of the tangent line is,

$$
y=8 x-16
$$

Solution (b) Since $f(x)$ equals $a x^{2}+b x+c$, substituting $x+\Delta x$ for $x, f(x+\Delta x)$ equals,

$$
a(x+\Delta x)^{2}+b(x+\Delta x)+c .
$$

Expanding the square, this is,

$$
a\left(x^{2}+2 x \Delta x+(\Delta x)^{2}\right)+b(x+\Delta x)+c .
$$

Therefore $f(x+\Delta x)-f(x)$ equals,

$$
\left[a\left(x^{2}+2 x \Delta x+(\Delta x)^{2}\right)+b(x+\Delta x)+c\right]-\left[a x^{2}+b x+c\right] .
$$

Cancelling like terms, namely $a x^{2}, b x$ and c, this simplifies to,

$$
2 a x \Delta x+a(\Delta x)^{2}+b \Delta x .
$$

Separating the common factor Δx from these terms, this simplifies to,

$$
f(x+\Delta x)-f(x)=(2 a x+a \Delta x+b) \Delta x
$$

This complete Step 1.
Because of the common factor Δx, the difference quotient is,

$$
\frac{f(x+\Delta x)-f(x)}{\Delta x}=2 a x+a \Delta x+b
$$

for Δx nonzero. This completes Step 2.
Holding a, b and x constant and allowing Δx to vary, the expression $2 a x+a \Delta x+b$ is a linear function in Δx; perhaps this is easier to see if it is written $a \Delta x+(2 a x+b)$. A linear function is continuous. Thus to compute the limit as Δx approaches 0 , it suffices to substitute in Δx equals 0 . Therefore,

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0}[a \Delta x+(2 a x+b)]=a 0+(2 a x+b)
$$

which simplifies to $2 a x+b$. Therefore the derivative of $a x^{2}+b x+c$ is,

$$
f^{\prime}(x)=2 a x+b
$$

Solution (c) The function is defined when $3 x+2$ is nonzero, i.e., when x is not $-2 / 3$. The function is undefined with x equals $-2 / 3$. Therefore assume that x is not $-2 / 3$.

Substituting $x+\Delta x$ for x gives,

$$
f(x+\Delta x)=\frac{1}{3(x+\Delta x)+2}
$$

To compute the difference,

$$
f(x+\Delta x)-f(x)=\frac{1}{3(x+\Delta x)+2}-\frac{1}{3 x+2}
$$

we express both fractions with the common denominator $(3(x+\Delta x)+2)(3 x+2)$,

$$
\begin{gathered}
{\left[\frac{1}{3(x+\Delta x)+2} \times \frac{3 x+2}{3 x+2}\right]-\left[\frac{1}{3 x+2} \times \frac{3(x+\Delta x)+2}{3(x+\Delta x)+2}\right]=} \\
\frac{3 x+2}{(3(x+\Delta x)+2)(3 x+2)}-\frac{3(x+\Delta x)+2}{(3(x+\Delta x)+2)(3 x+2)} .
\end{gathered}
$$

This simplifies to,

$$
\frac{(3 x+2)-(3(x+\Delta x)+2)}{(3(x+\Delta x)+2)(3 x+2)}
$$

Cancelling the like terms $3 x$ and 2 , this simplifies to,

$$
f(x+\Delta x)-f(x)=\frac{-3 \Delta x}{(3(x+\Delta x)+2)(3 x+2)}
$$

This completes Step 1.
Because of the factor Δx in the numerator of $f(x+\Delta x)-f(x)$, the difference quotient is,

$$
\frac{f(x+\Delta x)-f(x)}{\Delta x}=\frac{-3}{(3(x+\Delta x)+2)(3 x+2)},
$$

for Δx nonzero. This completes Step 2.
Considered as a function of Δx, is the expression $(-3) /(3 x+2+3 \Delta x)(3 x+2)$ defined and continuous at $\Delta x=0$? The only values of Δx where the expression is undefined or discontinuous are the values where the denominator equals 0 .
By hypothesis, x is not $-2 / 3$, and thus $3 x+2$ is not zero. Therefore the denominator is 0 if and only if $3 x+2+3 \Delta x$ is 0 . Thus the function $(-3) /(3 x+2+3 \Delta x)(3 x+2)$ has a single infinite discontinuity when Δx equals $-x-2 / 3$. Again using the hypothesis that x is not $-2 / 3,-x-2 / 3$ does not equal 0 . In other words, there is a single point where the function is undefined and discontinuous, but this point is different from $\Delta x=0$. Therefore $(-3) /(3 x+2+3 \Delta x)(3 x+2)$ is defined and continuous at $\Delta x=0$. So the limit can be computed by substituting in 0 for Δx. Therefore the derivative of $f(x)=1 /(3 x+2)$ is,

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{-3}{(3 x+2+3 \Delta x)(3 x+2)}=-3 /(3 x+2)^{2} .
$$

Solution (d) The function is defined when x is nonnegative and undefined when x is negative. Therefore assume that x is nonnegative, $x \geq 0$.

Substituting $x+\Delta x$ for x gives,

$$
f(x+\Delta x)=\sqrt{2(x+\Delta x)} .
$$

Please note this is defined if and only if $x+\Delta x$ is nonnegative, i.e., $\Delta x \geq-x$. Also, as always, Δx is nonzero.

To compute the difference,

$$
f(x+\Delta x)-f(x)=\sqrt{2(x+\Delta x)}-\sqrt{2 x}
$$

multiply and divide by the sum $\sqrt{2(x+\Delta x)}+\sqrt{2 x}$,

$$
f(x+\Delta x)-f(x)=(\sqrt{2(x+\Delta x)}-\sqrt{2 x}) \times \frac{\sqrt{2(x+\Delta x)}+\sqrt{2 x}}{\sqrt{2(x+\Delta x)}+\sqrt{2 x}}
$$

Although at first glance this seems to make the expression more complicated, in fact the expression now simplifies. The numerator is of the form $(a-b)(a+b)$ for $a=\sqrt{2(x+\Delta x)}$ and $b=\sqrt{2 x}$. But $(a-b)(a+b)$ simplifies to a "difference of squares", $a^{2}-b^{2}$. Thus the expression simplifies to,

$$
\frac{(\sqrt{2(x+\Delta x)})^{2}-(\sqrt{2 x})^{2}}{\sqrt{2(x+\Delta x)}+\sqrt{2 x}}=\frac{2(x+\Delta x)-(2 x)}{\sqrt{2(x+\Delta x)}+\sqrt{2 x}}
$$

Cancelling the like term $2 x$, this simplifies to,

$$
f(x+\Delta x)-f(x)=\frac{2 \Delta x}{\sqrt{2(x+\Delta x)}+\sqrt{2 x}}
$$

This completes Step 1.
Because of the factor Δx in the numerator of $f(x+\Delta x)-f(x)$, the difference quotient is,

$$
\frac{f(x+\Delta x)-f(x)}{\Delta x}=\frac{2}{\sqrt{2(x+\Delta x)}+\sqrt{2 x}}
$$

for Δx nonzero and satisfying $\Delta x \geq-x$. This completes Step 2 .
There are 2 cases depending on whether x is positive or zero. First consider the case that x is zero. Then the difference quotient is,

$$
\frac{2}{\sqrt{2 \Delta x}}
$$

This expression has an infinite discontinuity as Δx approaches 0 . Therefore the limit is undefined. Since the derivative is the limit of the difference quotient, $f^{\prime}(x)$ is undefined for $x=0$.

Next consider the case that x is positive. Considered as a function of Δx, for $\Delta x \geq-x$, the expression $2 /(\sqrt{2(x+\Delta x)}+\sqrt{2 x})$ is defined and continuous as long as the denominator is nonzero. Since $\sqrt{2 x}$ is positive and $\sqrt{2(x+\Delta x)}$ is nonnegative, the sum $\sqrt{2(x+\Delta x)}+\sqrt{2 x}$ is positive. Therefore the expression is defined and continuous at $\Delta x=0$. So the limit can be computed by substituting in 0 for Δx. Therefore the derivative of $f(x)=\sqrt{2 x}$ for $x>0$ is,

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{2}{\sqrt{2(x+\Delta x)}+\sqrt{2 x}}=\frac{2}{2 \sqrt{2 x}}=\frac{1}{\sqrt{2 x}}
$$

To summarize, $f^{\prime}(x)$ is undefined for $x=0$ and $f^{\prime}(x)=1 / \sqrt{2 x}$ for $x>0$.
Solution (e) The velocity of the first particle is,

$$
v_{1}(t)=s_{1}^{\prime}(t)=2 t-6,
$$

and the velocity of the second particle is,

$$
v_{2}(t)=s_{2}^{\prime}(t)=-4 t+9
$$

using the solution of Problem 1 of Section 2.3. Therefore the speed of the first particle is,

$$
\left|v_{1}(t)\right|=|2 t-6|= \begin{cases}6-2 t, & t \leq 3 \\ 2 t-6, & t>3\end{cases}
$$

and the speed of the second particle is,

$$
\left|v_{2}(t)\right|=|-4 t+9|= \begin{cases}9-4 t, & t \leq 9 / 4 \\ 4 t-9, & t>9 / 4\end{cases}
$$

(a). There are 3 cases to consider: $0 \leq t \leq 9 / 4,9 / 4<t \leq 3$ and $t>3$. In the first case, $\left|v_{1}(t)\right|$ equals $\left|v_{2}(t)\right|$ if and only if,

$$
(6-2 t=9-4 t) \text { if and only if }(2 t=3) \text { if and only if }(t=3 / 2)
$$

So for $0 \leq t \leq 9 / 4$, the speeds are equal for precisely one moment, $t=3 / 2$. At this time, both speeds equal 3. Note, however, the velocity of the first particle is -3 and the velocity of the second particle is +3 , i.e., the velocities are not equal.
In the second case, $\left|v_{1}(t)\right|$ equals $\left|v_{2}(t)\right|$ if and only if,

$$
(6-2 t=4 t-9) \text { if and only if }(6 t=15) \text { if and only if }(t=15 / 6)
$$

Note that $15 / 6=5 / 2=2 \frac{1}{2}$ is between $9 / 4=2 \frac{1}{4}$ and 3 . So, for $9 / 4<t \leq 3$, the speeds are equal for precisely one moment, $t=5 / 2$. At this time, both speeds equal 1 .

In the third case, $\left|v_{1}(t)\right|$ equals $\left|v_{2}(t)\right|$ if and only if,

$$
(2 t-6=4 t-9) \text { if and only if }(2 t=3) \text { if and only if }(t=3 / 2)
$$

However, $3 / 2=1 \frac{1}{2}$ is less than 3 . So for $t>9 / 4$, the particles never have the same speed. In summary, for $t \geq 0$ the two particles have equal speed at precisely two moments, $t=3 / 2$ and $t=5 / 2$. (b). The moment when the two particles have the same position is the solution of the equation,

$$
\begin{gathered}
s_{1}(t)=s_{2}(t), \text { or equivalently } \\
t^{2}-6 t=-2 t^{2}+9 t, \text { or equivalently } \\
3 t^{2}=15 t
\end{gathered}
$$

The two solutions of this quadratic equation are $t=0$ and $t=5$.
Now, $v_{1}(0)$ equals $2 \times 0-6=-6$ and $v_{2}(0)$ equals $-4 \times 0+9=9$. Also, $v_{1}(5)$ equals $2 \times 5-6=4$ and $v_{2}(5)$ equals $-4 \times 5+9=-11$. Thus, for $t=0$, the particles have velocities, $v_{1}=-6$ and $v_{2}=9$. And, for $t=5$, the particles have velocities $v_{1}=4$ and $v_{2}=-11$.
Solution (f) The expression $6 /(2 x-4)$ has an infinite discontinuity when the denominator equals 0 . The denominator is 0 when $2 x-4=0$, or equivalently, $x=2$. Therefore the limit,

$$
\lim _{x \rightarrow 2} \frac{6}{2 x-4}
$$

is undefined.

Solution (g) The expression $\left(x^{2}+3 x\right) /\left(x^{2}-x+3\right)$ is defined and continuous so long as the denominator is nonzero. Plugging in 3 for x, the denominator equals,

$$
(3)^{2}-(3)+3=9
$$

when $x=3$. Since the denominator is nonzero, the limit exists and equals,

$$
\lim _{x \rightarrow 3} \frac{x^{2}+3 x}{x^{2}-x+3}=\frac{(3)^{2}+3(3)}{(3)^{2}-(3)+3}=\frac{18}{9}=2 .
$$

Solution (h) The expression $(x-4) /(\sqrt{x}-2)$ is undefined when $x=4$, since the denominator is 0 . However, by the same "difference of squares" technique from Solution (d),

$$
\frac{1}{\sqrt{x}-2}=\frac{1}{\sqrt{x}-2} \times \frac{\sqrt{x}+2}{\sqrt{x}+2}=\frac{\sqrt{x}+2}{x-4}
$$

for x nonnegative and not 4 . Therefore, for x nonnegative and not 4 ,

$$
\frac{x-4}{\sqrt{x}-2}=\sqrt{x}+2
$$

The expression $\sqrt{x}+2$ is defined and continuous for all nonnegative x. Therefore the limit is obtained by plugging in 4 for x;

$$
\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2}=\lim _{x \rightarrow 4}(\sqrt{x}+2)=\sqrt{4}+2=4 .
$$

Solution (i) By Rules 1-4 on pp. 84-85, the derivative is,

$$
\begin{array}{rlr}
y^{\prime} & =\left(3 x^{2}\right)^{\prime}+(-5 x)^{\prime}+(2)^{\prime} & \text { (Rule 4) } \\
& =3\left(x^{2}\right)^{\prime}+(-5)(x)^{\prime}+2(1)^{\prime} & \text { (Rule 3) } \tag{Rule3}\\
& =3(2 x)+(-5)(1)+2(0) & \text { (Rule 2 and Rule 1) } \\
& =\quad 6 x-5 &
\end{array}
$$

Of course this is also a special case of Problem 1 from Section 2.3. At $x=2$, the derivative is $y^{\prime}=6(2)-5=7$. Therefore the equation of the tangent line is,

$$
(y-4)=7(x-2) \text { or equivalently } y=7 x-10
$$

Solution (j) In the first method, the fraction is simplified to,

$$
f(x)=\frac{2 x+6 x^{4}-2 x^{6}}{x^{5}}=2 x^{-4}+6 x^{-1}-2 x .
$$

Using Equation (3) on p. 90, the derivative is,

$$
f^{\prime}(x)=2\left(x^{-4}\right)^{\prime}+6\left(x^{-1}\right)^{\prime}-2(x)^{\prime}=2\left(-4 x^{-5}\right)+6\left(-x^{-2}\right)-2(1)=-8 x^{-5}-6 x^{-2}-2 .
$$

Clearing denominators, the derivative is,

$$
f^{\prime}(x)=\left(-8-6 x^{3}-2 x^{5}\right) / x^{5}
$$

In the second method, expressing $f(x)$ as a quotient,

$$
f(x)=g(x) / h(x), \quad g(x)=2 x+6 x^{4}-2 x^{6}, \quad h(x)=x^{5}
$$

the quotient rule gives,

$$
f^{\prime}(x)=\frac{g^{\prime}(x) h(x)-g(x) h^{\prime}(x)}{h(x)^{2}} .
$$

Using Section 3.1,

$$
g^{\prime}(x)=2+24 x^{3}-12 x^{5}, h^{\prime}(x)=5 x^{4}
$$

Therefore the quotient rule gives,

$$
f^{\prime}(x)=\frac{\left(2+24 x^{3}-12 x^{5}\right)\left(x^{5}\right)-\left(2 x+6 x^{4}-2 x^{6}\right)\left(5 x^{4}\right)}{x^{10}}
$$

Expanding and simplifying, the numerator equals,

$$
\left(2 x^{5}+24 x^{8}-12 x^{10}\right)-\left(10 x^{5}+30 x^{8}-10 x^{10}\right)=-8 x^{5}-6 x^{8}-2 x^{10}
$$

Thus the quotient rule gives,

$$
f^{\prime}(x)=\frac{-8 x^{5}-6 x^{8}-2 x^{10}}{x^{10}}
$$

Factoring x^{5} from numerator and denominator, this is,

$$
f^{\prime}(x)=\left(-8-6 x^{3}-2 x^{5}\right) / x^{5}
$$

just as in the first method.
Part II(30 points)
Problem 1 (15 points) The derivative of $f(x)=1 / x$ is $f^{\prime}(x)=-1 / x^{2}$ (for x nonzero).
(a)(5 points) Show that for the tangent line to the graph of $f(x)$ at $\left(x_{0}, y_{0}\right)$, the x-intercept of the line is $2 x_{0}$ and the y-intercept of the line is $2 y_{0}$.
Solution to (a) The equation of the tangent line is,

$$
\left(y-y_{0}\right)=\frac{-1}{x_{0}^{2}}\left(x-x_{0}\right) .
$$

The x-intercept is the unique value $x=x_{1}$ for which $y=0$. Plugging in $x=x_{1}$ and $y=0$ gives the equation,

$$
-y_{0}=\frac{-1}{x_{0}^{2}}\left(x_{1}-x_{0}\right) .
$$

Simplifying, this gives,

$$
x_{1}=x_{0}+x_{0}^{2} y_{0}
$$

Since $x_{0} y_{0}$ equals 1 , this simplifies to,

$$
x_{1}=x_{0}+x_{0}\left(x_{0} y_{0}\right)=x_{0}+x_{0}(1)=2 x_{0} .
$$

Similarly, the y-intercept is the unique value $y=y_{1}$ for which $x=0$. Plugging in $x=0$ and $y=y_{1}$ gives the equation,

$$
y_{1}-y_{0}=\frac{-1}{x_{0}^{2}}\left(-x_{0}\right)=\frac{1}{x_{0}} .
$$

Since $1 / x_{0}$ equals y_{0}, the equation is,

$$
y_{1}-y_{0}=y_{0} .
$$

Solving, this gives,

$$
y_{1}=2 y_{0} .
$$

(b)(5 points) Part (a) implies the following: For every pair of real numbers $\left(x_{1}, y_{1}\right)$, there is a tangent line to the graph of $f(x)$ with x-intercept x_{1} and y-intercept y_{1} if and only if $x_{1} y_{1}$ equals 4. You may use this fact freely.

Let (a, b) be a point such that $a b$ is nonzero and less than 1 (possibly negative). Show that a line L with x-intercept x_{1} and y-intercept y_{1} is a tangent line to the graph of $f(x)$ containing (a, b) if and only if x_{1} satisfies,

$$
b x_{1}^{2}-4 x_{1}+4 a=0
$$

and y_{1} satisfies,

$$
a y_{1}^{2}-4 y_{1}+4 b=0 .
$$

Hint. Using Equations 1-5 on pp. 11-12 of the textbook, deduce that L contains (a, b) if and only if $b x_{1}+a y_{1}$ equals $x_{1} y_{1}$. Then use the fact above to eliminate one of x_{1} or y_{1} from this equation, and simplify.
Solution to (b) The equation of the line L with x-intercept x_{1} and y-intercept y_{1} is,

$$
x_{1} y+y_{1} x=x_{1} y_{1} .
$$

Therefore (a, b) is on L if and only if,

$$
\begin{equation*}
b x_{1}+a y_{1}=x_{1} y_{1} . \tag{1}
\end{equation*}
$$

First, substituting in $y_{1}=4 / x_{1}$ to Equation 1 gives,

$$
b x_{1}+\frac{4 a}{x_{1}}=4
$$

Multiplying both sides by x_{1} and simplifying gives,

$$
b x_{1}^{2}-4 x_{1}+4 a=0
$$

Next, substituting in $x_{1}=4 / y_{1}$ to Equation 1 gives,

$$
\frac{4 b}{y_{1}}+a y_{1}=4
$$

Multiplying both sides by y_{1} and simplifying gives,

$$
a y_{1}^{2}-4 y_{1}+4 b=0
$$

(c)(5 points) Using the quadratic formula and Part (b), which you may now use freely, write down the equations of the 2 tangent lines to the graph of $f(x)$ containing the point $(a, b)=(5,-3)$.

Solution to (c) Plugging in $a=5$ and $b=-3$ to the equation $b x_{1}^{2}-4 x_{1}+4 a=0$ gives,

$$
-3 x_{1}^{2}-4 x_{1}+20=0
$$

By the quadratic formula, the solutions are,

$$
x_{1}=\frac{4}{2(-3)} \pm \frac{1}{2(-3)} \sqrt{(-4)^{2}-4(-3)(20)}
$$

Simplifying, this gives,

$$
x_{1}=\frac{-2}{3} \pm \frac{1}{-6} \sqrt{256}=\frac{-2}{3} \pm \frac{16}{6}=\frac{-2 \pm 8}{3} .
$$

Thus the solutions are $x_{1}=6 / 3=2$ and $x_{1}=-10 / 3$. Since $y_{1}=4 / x_{2}$, the corresponding solutions of y_{1} are $y_{1}=2$ and $y_{1}=-6 / 5$.
Since the equation of L is $y_{1} x+x_{1} y=x_{1} y_{1}$, the equations of the 2 tangent lines containing $(5,-3)$ are,

$$
\begin{gathered}
2 x+2 y=4 \\
\frac{-6}{5} x+\frac{-10}{3} y=4 .
\end{gathered}
$$

Simplifying, the equations of the 2 tangent lines containing $(5,-3)$ are,

$$
x+y=2 \text { and } 9 x+25 y=-30
$$

Problem 2(10 points) For a mass moving vertically under constant acceleration $-g$, the displacement function is,

$$
x(t)=-g t^{2} / 2+v_{0} t+x_{0}
$$

where x_{0} is the displacement and v_{0} is the instantaneous velocity at time $t=0$.
A scientist uses a magnetic field to conduct an experiment simulating zero gravity. At time $t=0$, the scientist drops a mass from a height of 10 m with instantaneous velocity $v_{0}=0$ under constant acceleration $-10 \mathrm{~m} / \mathrm{s}^{2}$. When the mass drops below height 5 m , the field is switched on and the particle continues to move with new acceleration $0 \mathrm{~m} / \mathrm{s}^{2}$.
Assuming the displacement and velocity are continuous, determine the height and instantaneous velocity of the mass at time $t=1.2 \mathrm{~s}$. Show your work.
Solution to Problem 2 Before the field is switched on, the displacement function is,

$$
x(t)=-10 t^{2} / 2+0 t+10=-5 t^{2}+10
$$

Differentiating, the velocity function is,

$$
v(t)=x^{\prime}(t)=-10 t
$$

The time t_{1} at which the field is switched on is the positive solution of the equation $x\left(t_{1}\right)=5$. Plugging in and solving gives,

$$
5=-5 t_{1}^{2}+10 \text { or equivalently } 5 t_{1}^{2}=5 \text { or equivalently } t_{1}^{2}=1
$$

Therefore the field is activated at time $t_{1}=1 \mathrm{~s}$.
The displacement function for $t>t_{1}$ is,

$$
x(t)=g_{1}\left(t-t_{1}\right)^{2} / 2+v_{1}\left(t-t_{1}\right)+x_{1},
$$

where g_{1} is the new acceleration, v_{1} is the instantaneous velocity at time $t=t_{1}$, and x_{1} is the displacement at time $t=t_{1}$. At time t_{1}, the displacement is $x_{1}=5$ and the instantaneous velocity is $v\left(t_{1}\right)=-10(1)=-10$. For $t>t_{1}$, the particle moves with acceleration $g_{1}=0$. Thus the displacement function is,

$$
x(t)=0(t-1)^{2}+(-10)(t-1)+5=-10 t+15
$$

Plugging in $t=1.2 \mathrm{~s}$ gives,

$$
x(1.2)=-10(1.2)+15=-12+15=3 m .
$$

Problem 3(5 points) For a differentiable function $f(x)$ and a real number a, using the difference quotient definition of the derivative, show that the function $g(x)=f(a x)$ has derivative,

$$
g^{\prime}(x)=a f^{\prime}(a x)
$$

Solution to Problem 3 Plugging in,

$$
g(x+\Delta x)-g(x)=f(a(x+\Delta x))-f(a x)=f(a x+a \Delta x)-f(a x)
$$

Thus the difference quotient for $g(x)$ is,

$$
\frac{g(x+\Delta x)-g(x)}{\Delta x}=\frac{f(a x+a \Delta x)-f(a x)}{\Delta x} .
$$

By definition of the derivative,

$$
g^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{g(x+\Delta x)-g(x)}{\Delta x}
$$

Now, for an expression $E(\Delta x)$ involving Δx,

$$
\lim _{\Delta x \rightarrow \Delta x_{0}} E(\Delta x)=\lim _{a \Delta x \rightarrow a \Delta x_{0}} E(\Delta x) .
$$

Applying this to the limit above, and using that $a(0)$ equals 0 ,

$$
\begin{gathered}
g^{\prime}(x)=\lim _{a \Delta x \rightarrow 0} \frac{f(a x+a \Delta x)-f(a x)}{\Delta x}=\lim _{a \Delta x \rightarrow 0} \frac{f(a x+a \Delta x)-f(a x)}{\Delta x} \times \frac{a}{a}= \\
a \lim _{a \Delta x \rightarrow 0} \frac{f(a x+a \Delta x)-f(a x)}{a \Delta x}
\end{gathered}
$$

Substituting $h=a \Delta x$, this is,

$$
g^{\prime}(x)=a \lim _{h \rightarrow 0} \frac{f(a x+h)-f(a x)}{h}
$$

This limit is precisely the derivative of $f(x)$ at the point $a x$. Therefore,

$$
g^{\prime}(x)=a f^{\prime}(a x)
$$

