Solutions to Problem Set 2

Part I/Part II
Part I(20 points)

(a)	2 points)	p. 97,	Section 3.3,	Problem 44
(b)		p. 107,	Section 3.5,	Problem 15
(c)	points)	p. 110,	Section 3.6,	Problem 3(c)
(d)	nts)	p. 263,	Section 8.2,	Problem 6
(e)	2 points)	p. 264	Section 8.2,	Problem 11
(f)	ints)		Section 8.3,	Proble
(g)	2 points)	p. 277	Section 8.4,	Problem 19(b)
(h)	(2 points)	p. 300,	Section 9.1,	Problem 12
(i)			Section 9.2,	Problem 16
(j)	(2 points)	p. 311	Section 9.	Proble

Solution (a) Let u equal $8-x^{2}$, and let $v=u^{5}$. Then y equals,

$$
y=\frac{x}{v} .
$$

By the quotient rule,

$$
y^{\prime}=\frac{1}{v^{2}}\left((x)^{\prime} v-x\left(v^{\prime}\right)\right)=\frac{1}{v^{2}}\left(v-x\left(v^{\prime}\right)\right)
$$

By the chain rule,

$$
v^{\prime}=\frac{d v}{d x}=\frac{d v}{d u} \cdot \frac{d u}{d x}=\left(5 u^{4}\right)(-2 x)
$$

When x equals 3 , u equals $8-(3)^{2}=-1$ and v equals $(-1)^{5}=-1$. Thus $v^{\prime}(3)$ equals $\left(5(-1)^{4}\right)(-2$. $3)=-30$. Thus, $y^{\prime}(3)$ equals,

$$
y^{\prime}(3)=\frac{1}{(-1)^{2}}((-1)-(3)(-30))=-1+90=89 .
$$

Therefore, the slope of the tangent line at $(3,-3)$ is,

$$
y=89(x-3)+(-3), \quad y=89 x-270 .
$$

Solution (b) Implicit differentiation gives,

$$
\frac{d}{d x}\left(\frac{1-y}{1+y}\right)=\frac{d(x)}{d x}=1
$$

By the chain rule,

$$
\frac{d}{d x}\left(\frac{1-y}{1+y}\right)=\frac{d}{d y}\left(\frac{1-y}{1+y}\right) \frac{d y}{d x}
$$

By the quotient rule,

$$
\frac{d}{d y}\left(\frac{1-y}{1+y}\right)=\frac{1}{(1+y)^{2}}\left((1-y)^{\prime}(1+y)-(1-y)(1+y)^{\prime}\right)=\frac{1}{(1+y)^{2}}((-1)(1+y)-(1-y)(1))=\frac{-2}{(1+y)^{2}}
$$

Thus, implicit differentiation gives,

$$
\frac{-2}{(1+y)^{2}} \frac{d y}{d x}=1
$$

or,

$$
\frac{d y}{d x}=-(1+y)^{2} / 2
$$

To solve for x, multiply both sides of the equation by $1+y$ to get,

$$
1-y=x(1+y)=x+x y
$$

Add $y-x$ to each side of the equation to get,

$$
1-x=x y+y=(x+1) y .
$$

Divide each side of the equation to get,

$$
y=\frac{1-x}{1+x}
$$

By the quotient rule,
$y^{\prime}=\frac{1}{(1+x)^{2}}\left((1-x)^{\prime}(1+x)-(1-x)(1+x)^{\prime}\right)=\frac{1}{(1+x)^{2}}((-1)(1+x)-(1-x)(1))=-2 /(1+x)^{2}$.
Since $y=(1-x) /(1+x), 1+y$ equals,

$$
1+y=\frac{1+x}{1+x}+\frac{1-x}{1+x}=\frac{(1+x)+(1-x)}{1+x}=\frac{2}{1+x}
$$

Thus,

$$
\frac{-1}{2}(1+y)^{2}=\frac{-1}{2}\left(\frac{2}{1+x}\right)^{2}=\frac{-1}{2} \frac{4}{(1+x)^{2}}
$$

Therefore,

$$
\frac{-1}{2}(1+y)^{2}=\frac{-2}{(1+x)^{2}} .
$$

So the two answers for y^{\prime} are equivalent.
Solution (c) The fraction simplifies,

$$
y=\frac{x}{1+x}=\frac{(1+x)-1}{1+x}=\frac{1+x}{1+x}-\frac{1}{1+x}=1-\frac{1}{1+x} .
$$

Let z equal $1 /(1+x)$. Then y equals $1-z$. So y^{\prime} equals $-z^{\prime}$. So $y^{\prime \prime}$ equals $-z^{\prime \prime}$. Clearly, for every positive integer $n, y^{(n)}$ equals $-z^{(n)}$. By the same argument as in Example 2 on p. 109,

$$
z^{(n)}=(-1)^{n} n!(x+1)^{-(n+1)} .
$$

Thus, for every positive integer n,

$$
y^{(n)}=(-1)^{n+1} n!(x+1)^{-(n+1)} .
$$

Solution (d) The equation,

$$
y=\log _{a}\left(x+\sqrt{x^{2}-1}\right)
$$

is equivalent to the equation,

$$
a^{y}=x+\sqrt{x^{2}-1}
$$

Subtract x from each side to get,

$$
a^{y}-x=\sqrt{x^{2}-1}
$$

and then square each side to get,

$$
\left(a^{y}-x\right)^{2}=x^{2}-1
$$

Expanding the left-hand-side gives,

$$
\left(a^{y}\right)^{2}-2 x a^{y}+x^{2}=x^{2}-1
$$

Cancelling x^{2} from each side gives,

$$
\left(a^{y}\right)^{2}-2 x a^{y}=-1
$$

Adding $2 x a^{y}+1$ to each side of the equation gives,

$$
\left(a^{y}\right)^{2}+1=2 x a^{y} .
$$

The expression $2 a^{y}$ is always nonzero. Thus it is valid to divide each side by $2 a^{y}$, giving,

$$
x=\left[\left(a^{y}\right)^{2}+1\right] /\left(2 a^{y}\right)=\left[a^{y}+1 / a^{y}\right] / 2 .
$$

Of course $1 / a^{y}$ equals a^{-y}. So this simplifies to,

$$
x=\left(a^{y}+a^{-y}\right) / 2
$$

Solution (e) Because $1 / 2$ is less than $1, \log (1 / 2)$ is less than $\log (1)=0$. Thus $\log (1 / 2)$ is negative. For every pair of real numbers $a<b$ and every negative number $c, a c$ is greater than $b c$, not less than $b c$. Therefore, the correct inequality is,

$$
1 \cdot \log \frac{1}{2}>2 \cdot \log \frac{1}{2}
$$

The remainder of the argument is correct, and eventually leads to the true inequality,

$$
\frac{1}{2}>\frac{1}{4}
$$

Solution (f) By the product rule,

$$
\frac{d}{d x}\left(x^{2} e^{-x^{2}}\right)=\frac{d\left(x^{2}\right)}{d x} e^{-x^{2}}+x^{2} \frac{d\left(e^{-x^{2}}\right)}{d x}=2 x e^{-x^{2}}+x^{2} \frac{d\left(e^{-x^{2}}\right)}{d x} .
$$

Let u equal $-x^{2}$ and let v equal e^{u}. Thus v equals $e^{-x^{2}}$. By the chain rule,

$$
\frac{d v}{d x}=\frac{d v}{d u} \frac{d u}{d x}
$$

Also,

$$
\frac{d\left(e^{u}\right)}{d u}=e^{u}, \text { and } \frac{d\left(-x^{2}\right)}{d x}=-2 x
$$

Plugging in,

$$
\frac{d v}{d x}=e^{u}(-2 x)=e^{-x^{2}}(-2 x)=-2 x e^{-x^{2}}
$$

Thus,

$$
\frac{d}{d x}\left(x^{2} e^{-x^{2}}\right)=2 x e^{-x^{2}}+x^{2}\left(-2 x e^{-x^{2}}\right)=2 x e^{-x^{2}}-2 x^{3} e^{-x^{2}}=-2 x\left(x^{2}-1\right) e^{-x^{2}}
$$

Solution (g) Let u equal $\ln (y)$. Then, using rules of logarithms,

$$
u=\ln (y)=\ln \left(\frac{x^{2}+3}{x+5}\right)^{1 / 5}=\frac{1}{5} \ln \left(\frac{x^{2}+3}{x+5}\right)=\frac{1}{5} \ln \left(x^{2}+3\right)-\frac{1}{5} \ln (x+5)
$$

Thus,

$$
\frac{d u}{d x}=\frac{1}{5} \frac{d}{d x}\left(\ln \left(x^{2}+3\right)\right)-\frac{1}{5} \frac{d}{d x}(\ln (x+5))
$$

18.01 Calculus

Jason Starr
Due by 2:00pm sharp
Fall 2005
Friday, Sept. 30, 2005

Let v equal $x^{2}+3$. By the chain rule,

$$
\frac{d \ln (v)}{d x}=\frac{d \ln (v)}{d v} \frac{d v}{d x}=\frac{1}{v}(2 x)=\frac{2 x}{x^{2}+3}
$$

Let w equal $x+5$. By the chain rule,

$$
\frac{d \ln (w)}{d x}=\frac{d \ln (w)}{d w} \frac{d w}{d x}=\frac{1}{w}(1)=\frac{1}{x+5}
$$

Thus,

$$
\frac{d u}{d x}=\frac{2 x}{5\left(x^{2}+3\right)}-\frac{1}{5(x+5)}
$$

On the other hand,

$$
\frac{d u}{d x}=\frac{d \ln (y)}{d x}=\frac{1}{y} \frac{d y}{d x}
$$

Therefore,

$$
\frac{d y}{d x}=y \frac{d u}{d x}=\sqrt[5]{\frac{x^{2}+3}{x+5}}\left(\frac{2 x}{5\left(x^{2}+3\right)}-\frac{1}{5(x+5)}\right)
$$

Solution (h) By the double-angle formula,

$$
\cos (2 \phi)=(\cos (\phi))^{2}-(\sin (\phi))^{2}=2(\cos (\phi))^{2}-\left[(\cos (\phi))^{2}+(\sin (\phi))^{2}\right]=2(\cos (\phi))^{2}-1
$$

Substituting 2θ for ϕ gives,

$$
\cos (4 \theta)=2(\cos (2 \theta))^{2}-1
$$

Subsituting in $\cos (2 \theta)=2(\cos (\theta))^{2}-1$ gives,

$$
\begin{gathered}
\cos (4 \theta)=2\left[2(\cos (\theta))^{2}-1\right]^{2}-1=2\left[4(\cos (\theta))^{4}-4(\cos (\theta))^{2}+1\right]-1 \\
=8(\cos (\theta))^{4}-8(\cos (\theta))^{2}+1
\end{gathered}
$$

Solution (i) First of all, $\ln \left(x^{2}\right)$ equals $2 \ln (x)$. Thus,

$$
y=\sin (2 \ln (x))
$$

Let u equal $2 \ln (x)$. Thus y equals $\sin (u)$. By the chain rule,

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

Of course,

$$
\frac{d u}{d x}=\frac{d(2 \ln (x))}{d x}=\frac{2}{x}
$$

Also,

$$
\frac{d \sin (u)}{d u}=\cos (u)
$$

Thus,

$$
\frac{d y}{d x}=\cos (u) \frac{2}{x}=2 \cos (2 \ln (x)) / x
$$

Solution (j) Writing the functions out in terms of $\sin (x)$ and $\cos (x)$,

$$
y=\left(\frac{\cos (x)}{\sin (x)}+\frac{1}{\sin (x)}\right)^{2}=\left(\frac{\cos (x)+1}{\sin (x)}\right)^{2}
$$

Let u equal $(\cos (x)+1) / \sin (x)$. Then $y=u^{2}$. By the chain rule,

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=2 u \frac{d u}{d x}
$$

Let v equal $\cos (x)+1$ and let w equal $\sin (x)$. Then $u=v / w$. By the quotient rule,

$$
\frac{d u}{d x}=\frac{1}{w^{2}}\left(\frac{d v}{d x} w-v \frac{d w}{d x}\right) .
$$

Also, $d v / d x$ equals $-\sin (x)$ and $d w / d x$ equals $\cos (x)$. Thus,

$$
\begin{aligned}
& \frac{d u}{d x}=\frac{1}{(\sin (x))^{2}}((-\sin (x)) \sin (x)-(\cos (x)+1) \cos (x)) \\
= & \frac{1}{(\sin (x))^{2}}\left(-(\sin (x))^{2}-(\cos (x))^{2}-\cos (x)\right)=\frac{-(\cos (x)+1)}{(\sin (x))^{2}} .
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
\frac{d y}{d x}=\frac{2(\cos (x)+1)}{\sin (x)} \frac{-(\cos (x)+1)}{(\sin (x))^{2}}= \\
-2(\cos (x)+1)^{2} /(\sin (x))^{3} .
\end{gathered}
$$

Part II(30 points)

Problem 1(5 points) Find the equation of the tangent line to the graph of $y=e^{571 x}$ containing the point $(102 \pi, 0)$. (This is not a point on the graph; it is a point on the tangent line.)
Solution to Problem 1 Denote 571 by the symbol n. Denote 102π by the symbol a. The derivative of $e^{n x}$ equals $n e^{n x}$. Thus the slope of the tangent line to $y=e^{n x}$ at the point $\left(b, e^{n b}\right)$ equals $n e^{n b}$. So the equation of the tangent line to $y=e^{n x}$ at $\left(b, e^{n b}\right)$ is,

$$
y=n e^{n b}(x-b)+e^{n b}=n e^{n b} x-(n b-1) e^{n b}
$$

If $(a, 0)$ is contained in this line, then the equation holds for $x=a$ and $y=0$,

$$
0=n e^{n b} a-(n b-1) e^{n b}=(n a-n b+1) e^{n b}
$$

Since $e^{n b}$ is not zero, dividing by $e^{n b}$ gives,

$$
n a-n b+1=0
$$

This can be solved to determine the one unknown in the equation, b :

$$
b=(n a+1) / n .
$$

Substituting this in gives the equation of the tangent line to $y=e^{n x}$ containing $(a, 0)$,

$$
y=n e^{(n a+1)} x-n a e^{(n a+1)} .
$$

Problem 2(5 points)
(a)(2 points) What does the chain rule say if $y=x^{a}$ and $u=y^{b}$? The constants a and b are fractions.

Solution to (a) First of all, u equals y^{b}, which equals $\left(x^{a}\right)^{b}$. By the rules for exponents, this equals $x^{a b}$. According to the chain rule,

$$
\frac{d u}{d x}=\frac{d u}{d y} \frac{d y}{d x}=\left(b y^{b-1}\right)\left(a x^{a-1}\right)
$$

Substituting in $y=x^{a}$ gives,

$$
\frac{d u}{d x}=\left(b\left(x^{a}\right)^{b-1}\right)\left(a x^{a-1}\right) .
$$

Using the rules for exponents, this equals,

$$
\frac{d u}{d x}=\left(b x^{a(b-1)}\right)\left(a x^{a-1}\right)=a b x^{a b-a} x^{a-1}=a b x^{a b-1}
$$

This is precisely what the chain rule should give, since, setting $c=a b$,

$$
\frac{d\left(x^{c}\right)}{d x}=c x^{c-1}=a b x^{a b-1}
$$

(b)(3 points) Using the chain rule, give a very short explanation of the formula from Problem 3, Part II of Problem Set 1.
Solution to (b) Let u equal $a x$ and let y equal $f(u)$. Then y equals $f(a x)$, which is $g(x)$. Thus $g^{\prime}(x)$ equals $d y / d x$. By the chain rule,

$$
\begin{aligned}
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x} & =f^{\prime}(u)(a x)^{\prime}=f^{\prime}(a x)(a) \\
& =a f^{\prime}(a x) .
\end{aligned}
$$

Problem 3(10 points) A bank offers savings accounts and loans. For an initial deposit of A dollars in a savings account with continuously compounded interest at an annual rate a, after t years the bank owes the customer $A(1+a)^{t}$ dollars (neglecting fees). For an initial loan of B dollars with continuously compounded interest at an annual rate b, after t years the customer owes the bank $B(1+b)^{t}$ dollars (neglecting fees). To make a profit, the bank sets rate b, the interest rate for loans, higher than rate a, the interest rate for savings. To simplify computations, introduce $\alpha=\ln (1+a)$ and $\beta=\ln (1+b)$.
Customer 1 deposits A dollars in a savings account. The bank immediately loans a smaller amount of B dollars to Customer 2. After t years, the bank's net gain from the two transactions together is,

$$
\begin{equation*}
G(t)=B e^{\beta t}-A e^{\alpha t} \tag{1}
\end{equation*}
$$

In the long run, which is to say, when t is very large, $G(t)$ is positive and the bank has made a gain. However, for t small, $G(t)$ is negative and the bank has a net liability,

$$
\begin{equation*}
L(t)=-G(t)=A e^{\alpha t}-B e^{\beta t} \tag{2}
\end{equation*}
$$

The liability for the savings account alone is,

$$
\begin{equation*}
M(t)=A e^{\alpha t} \tag{3}
\end{equation*}
$$

In these equations, A, B, α and β are positive constants, and t is the independent variable.
(a)(5 points) Find the moment $t=T$ when the derivative $L^{\prime}(T)$ equals 0 . Assume that αA is greater than βB. Also, leave your answer in the form,

$$
e^{(\beta-\alpha) T}=\text { something. }
$$

Remark. After Lecture 10, we will learn that T is the moment when $L(t)$ has its largest value. In other words, if at time t Customer 1 withdraws all money, and Customer 2 repays all money, the bank loses the maximum amount when $t=T$.
Solution to (a) Using the chain rule,

$$
L^{\prime}(t)=A\left(e^{\alpha t}\right)^{\prime}-B\left(e^{\beta t}\right)^{\prime}=A\left(\alpha e^{\alpha t}\right)-B\left(\beta e^{\beta t}\right)=\alpha A e^{\alpha t}-\beta B e^{\beta t}
$$

By definition of $T, L^{\prime}(T)$ equals 0 . Thus,

$$
\beta B e^{\beta T}=\alpha A e^{\alpha T} .
$$

Dividing each side of the equation by $\beta B e^{\alpha T}$ gives,

$$
e^{\beta T} / e^{\alpha T}=\frac{\alpha A}{\beta B} .
$$

Using rules of exponents, this is,

$$
e^{(\beta-\alpha) T}=(\alpha A) /(\beta B)
$$

It is worth remarking that to make T small, the bank may maximize the fraction B / A of money loaned to money deposited and the bank may maximize the fraction β / α (although if β is too high or α too low, customers are discouraged from using the bank).
(b)(5 points) Consider the ratio $L(t) / M(t)$. Using your answer to (a), determine $L(T) / M(T)$. Simplify your answer as much as possible. How does this ratio depend on the amounts A and B ?
Solution to (b) The ratio $L(t) / M(T)$ equals,

$$
\frac{L(t)}{M(t)}=\frac{A e^{\alpha t}-B e^{\beta t}}{A^{\alpha t}}=1-\frac{B}{A} e^{(\beta-\alpha) t}
$$

By the formula from the Solution to (a), $e^{(\beta-\alpha) T}$ equals $(\alpha A) /(\beta B)$. Plugging this in,

$$
\frac{L(T)}{M(T)}=1-\frac{B}{A} \frac{\alpha A}{\beta B}=1-(\alpha / \beta)
$$

In particular, this is independent of A and B.
Remark. From the formulas, the bank's strategy is clear. First, adjust the ratio β / α to the highest level allowed by law and compatible with the market's demands. Then, for fixed α and β, the ratio $L(T) / M(T)$ is independent of A and B. So the maximal liability $L(T)$ is proportional to $M(T)$. Since $M(T)$ is an increasing function, the strategy is to minimize T, by maximizing the ratio B / A. (Of course this ratio will always be less than 1 , since some fraction of all capital goes to the federal reserve, some fraction is used to cover operating expenses, etc.)
Problem $4(10$ points $)$ Let A, β, ω and t_{0} be positive constants. Let $f(t)$ be the function,

$$
f(t)=A e^{-\beta t} \cos \left(\omega\left(t-t_{0}\right)\right) .
$$

(a) (5 points) Compute $f^{\prime}(t)$ and $f^{\prime \prime}(t)$. Simplify your answer as much as possible.

Solution to (a) Let s equal $t-t_{0}$. Then $f(t)=g(s)$, where,

$$
g(s)=B e^{-\beta s} \cos (\omega s)
$$

and $B=A e^{-\beta t_{0}}$. The derivative $d s / d t$ equals 1. Thus, according to the chain rule,

$$
\frac{d f}{d t}=\frac{d g}{d s}
$$

Using the product rule and the chain rule, this equals,

$$
\begin{gathered}
\frac{d g}{d s}=B\left(e^{-\beta s}\right)^{\prime} \cos (\omega s)+B e^{-\beta s}(\cos (\omega s))^{\prime}= \\
B\left(-\beta e^{-\beta s}\right) \cos (\omega s)+B e^{-\beta s}(-\omega \sin (\omega s))= \\
\quad-B \beta e^{-\beta s} \cos (\omega s)-B \omega e^{-\beta s} \sin (\omega s) .
\end{gathered}
$$

In particular, when B equals 1 , this gives,

$$
\left.\frac{d}{d s}\left(e^{-\beta s} \cos (\omega s)\right)=-\beta e^{-\beta s} \cos (\omega s)-\omega e^{-\beta s} \sin (\omega s)\right)
$$

The second derivative $g^{\prime \prime}(s)$ involves the derivative of $e^{-\beta s} \cos (\omega s)$, but it is also involves the derivative of $e^{-\beta s} \sin (\omega s)$. Using the chain rule and the product rule,

$$
\begin{gathered}
\frac{d}{d s}\left(e^{-\beta s} \sin (\omega s)\right)=\left(e^{-\beta s}\right)^{\prime} \sin (\omega s)+e^{-\beta s}(\sin (\omega s))^{\prime}= \\
-\beta e^{-\beta s} \sin (\omega s)+\omega e^{-\beta s} \cos (\omega s)
\end{gathered}
$$

As above,

$$
\frac{d^{2} f}{d t^{2}}=\frac{d^{2} g}{d s^{2}}
$$

This is,

$$
\begin{gathered}
\frac{d}{d s}\left(\frac{d g}{d s}\right)=-B \beta\left[e^{-\beta s} \cos (\omega s)\right]^{\prime}-B \omega\left[e^{-\beta s} \sin (\omega s)\right]^{\prime}= \\
-B \beta\left[-\beta e^{-\beta s} \cos (\omega s)-\omega e^{-\beta s} \sin (\omega s)\right]-B \omega\left[-\beta e^{-\beta s} \sin (\omega s)+\omega e^{-\beta s} \cos (\omega s)\right]= \\
\left(B \beta^{2}-B \omega^{2}\right) e^{-\beta s} \cos (\omega s)+(B \beta \omega+B \beta \omega) e^{-\beta s} \sin (\omega s)= \\
B\left(\beta^{2}-\omega^{2}\right) e^{-\beta s} \cos (\omega s)+2 B \beta \omega e^{-\beta s} \sin (\omega s) .
\end{gathered}
$$

Back-substituting $s=t-t_{0}$ and $B e^{-\beta s}=A e^{-\beta t}$ gives,

$$
f^{\prime}(t)=-A \beta e^{-\beta t} \cos \left(\omega\left(t-t_{0}\right)\right)-A^{\prime} \omega e^{-\beta t} \sin \left(\omega\left(t-t_{0}\right)\right)
$$

and,

$$
f^{\prime \prime}(t)=A\left(\beta^{2}-\omega^{2}\right) e^{-\beta t} \cos \left(\omega\left(t-t_{0}\right)\right)+2 A \beta \omega e^{-\beta t} \sin \left(\omega\left(t-t_{0}\right)\right)
$$

(b)(5 points) Using your answer to (a), find nonzero constants c_{0}, c_{1} and c_{2} for which the function

$$
c_{2} f^{\prime \prime}(t)+c_{1} f^{\prime}(t)+c_{0} f(t)
$$

always equals 0 .
Solution to (b) From the Solution to (a), $f^{\prime}(t)+\beta f(t)$ equals $-A e^{-\beta t}\left(\omega \sin \left(\omega\left(t-t_{0}\right)\right)\right)$. Plugging this into the formula for $f^{\prime \prime}(t)$ gives,

$$
f^{\prime \prime}(t)=\left(\beta^{2}-\omega^{2}\right) f(t)-2 \beta\left(f^{\prime}(t)+\beta(f)\right)=-2 \beta f^{\prime}-\left(\beta^{2}+\omega^{2}\right) f(t)
$$

Simplifying gives,

$$
f^{\prime \prime}(t)+2 \beta f^{\prime}(t)+\left(\omega^{2}+\beta^{2}\right) f(t)=0
$$

In fact, every solution is of the form,

$$
c_{2}=c, c_{1}=2 \beta c, c_{0}=\omega^{2}+\beta^{2}
$$

for some nonzero c.

