Problem Set 5

Late homework policy. Late work will be accepted only with a medical note or for another Institute-approved reason.

Cooperation policy. You are encouraged to work with others, but the final write-up must be entirely your own and based on your own understanding. You may not copy another student's solutions. And you should not refer to notes from a study group while writing up your solutions (if you need to refer to notes from a study group, it isn't really "your own understanding").

Part I. These problems are mostly from the textbook and reinforce the basic techniques. Occasionally the solution to a problem will be in the back of the textbook. In that case, you should work the problem first and only use the solution to check your answer.

Part II. These problems are not taken from the textbook. They are more difficult and are worth more points. When you are asked to "show" some fact, you are not expected to write a "rigorous solution" in the mathematician's sense, nor a "textbook solution". However, you should write a clear argument, using English words and complete sentences, that would convince a typical Calculus student. (Run your argument by a classmate; this is a good way to see if your argument is reasonable.) Also, for the grader's sake, try to keep your answers as short as possible (but don't leave out *important* steps).

Part I(20 points)

(a)	(4 points)	p. 181,	Section 5.4 ,	Problem 12
(b)	(4 points)	p. 283,	Section 8.5 ,	Problem 16
(c)	(4 points)	p. 374,	Section 10.9,	Problem 4
(d)	(4 points)	p. 225,	Section 7.2 ,	Problem 25
(e)	(4 points)	p. 229,	Section 7.3,	Problem 7

Part II(30 points)

Problem 1(15 points) For each positive integer n, consider the collection of curves,

$$y = Cx^n,$$

where C varies over all real numbers.

(a) (5 points) For $y = Cx^n$, find the derivative dy/dx. Then use the expression $y = Cx^n$ to eliminate the constant C from dy/dx. Write your answer in the form,

$$\frac{dy}{dx} = F(x, y),$$

for some function F that does not involve C.

(b)(5 points) A differentiable function y = g(x) has the property that for every point (a, b) on the graph, the tangent line to y = g(x) at (a, b) is orthogonal to the tangent line to $y = Cx^n$ at (a, b). Here C is chosen to be,

$$C = \frac{b}{a^n},$$

so that (a, b) is on the graph of $y = Cx^n$. Use the hypothesis to write a differential equation g(x) satisfies.

Hint. The differential equation is *separable*.

(c)(5 points) Solve the separable differential equation to find all curves y = g(x) satisfying the hypothesis. Express the curve implicitly in the form,

$$G(x,y) = E_{z}$$

where G(x, y) is a polynomial, and E is a positive real number.

Problem 2(10 points) Solve Problem 11 on p. 229 of the textbook. The answer is in the back of the book (and even in the statement of the problem). You are responsible for showing the work, and explaining the steps, leading to the answer.

Problem 3(5 points) A *cone* over a plane region R is the solid obtained by joining every point in R to a fixed point P not in the plane. If the height of P above the plane is h, and if the area of the region R is A, the volume of the cone is,

$$V = \frac{1}{3}Ah.$$

Prove this fact by computing the volume using the washer method. You may use the fact that if a plane region is scaled by a factor c, the area scales by the factor c^2 .