18.01 Solutions to Exam 1

Problem 1(15 points) Use the definition of the derivative as a limit of difference quotients to compute the derivative of $y=x+\frac{1}{x}$ for all points $x>0$. Show all work.
Solution to Problem 1 Denote by $f(x)$ the function $x+\frac{1}{x}$. By definition, the derivative of $f(x)$ at $x=a$ is,

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

The increment $f(a+h)-f(a)$ equals,

$$
\left((a+h)+\frac{1}{a+h}\right)-\left(a+\frac{1}{a}\right)=h+\left(\frac{1}{a+h}-\frac{1}{a}\right) .
$$

To compute the second term, clear denominators,

$$
\frac{1}{a+h}-\frac{1}{a}=\frac{1}{a+h} \frac{a}{a}-\frac{1}{a} \frac{a+h}{a+h}=\frac{a-(a+h)}{a(a+h)}=\frac{-h}{a(a+h)} .
$$

Thus the increment $f(a+h)-f(a)$ equals,

$$
h-\frac{h}{a(a+h)} .
$$

Factoring h from each term, the difference quotient equals,

$$
\frac{f(a+h)-f(a)}{h}=1-\frac{1}{a(a+h)} .
$$

Thus the derivative of $f(x)$ at $x=a$ equals,

$$
f^{\prime}(a)=\lim _{h \rightarrow 0}\left(1-\frac{1}{a(a+h)}\right)=1-\frac{1}{a(a+0)}=1-\frac{1}{a^{2}} .
$$

Therefore the derivative function of $f(x)$ equals,

$$
f^{\prime}(x)=1-\frac{1}{x^{2}}
$$

Problem 2(10 points) For the function $f(x)=e^{-x^{2} / 2}$, compute the first, second and third derivatives of $f(x)$.
Solution to Problem 2 Set u equals $-x^{2} / 2$ and set v equals e^{u}. So v equals $f(x)$. By the chain rule,

$$
\frac{d v}{d x}=\frac{d v}{d u} \frac{d u}{d x}
$$

Since v equals $e^{u}, d v / d u$ equals $\left(e^{u}\right)^{\prime}=e^{u}$. Since u equals $-x^{2} / 2, d u / d x$ equals $-(2 x) / 2=-x$. Thus, back-substituting,

$$
f^{\prime}(x)=\frac{d v}{d x}=\left(e^{u}\right)(-x)=e^{-x^{2} / 2}(-x)=-x e^{-x^{2} / 2}
$$

For the second derivative, let u and v be as defined above, and set w equals $-x v$. So w equals $f^{\prime}(x)$. By the product rule,

$$
\frac{d w}{d x}=(-x)^{\prime} v+(-x) v^{\prime}=-v-x \frac{d v}{d x}
$$

By the last paragraph,

$$
\frac{d v}{d x}=-x e^{-x^{2} / 2}
$$

Substituting in,

$$
f^{\prime \prime}(x)=\frac{d w}{d x}=-e^{-x^{2} / 2}-x\left(-x e^{-x^{2} / 2}\right)=-e^{-x^{2} / 2}+x^{2} e^{-x^{2} / 2}=\left(x^{2}-1\right) e^{-x^{2} / 2}
$$

For the third derivative, take u and v as above, and set z equals $\left(x^{2}-1\right) v$. So z equals $f^{\prime \prime}(x)$. By the product rule,

$$
\frac{d z}{d x}=\left(x^{2}-1\right)^{\prime} v+\left(x^{2}-1\right) v^{\prime}=2 x v+\left(x^{2}-1\right) \frac{d v}{d x}
$$

By the first paragraph,

$$
\frac{d v}{d x}=-x e^{-x^{2} / 2}
$$

Substituting in,

$$
f^{\prime \prime \prime}(x)=\frac{d z}{d x}=2 x e^{-x^{2} / 2}+\left(x^{2}-1\right)\left(-x e^{-x^{2} / 2}\right)=2 x e^{-x^{2} / 2}+\left(-x^{3}+x\right) e^{-x^{2} / 2}=\left(-x^{3}+3 x\right) e^{-x^{2} / 2}
$$

Extra credit(5 points) Only attempt this after you have completed the rest of the exam and checked your answers. For every positive integer n, show that the $n^{\text {th }}$ derivative of $f(x)$ is of the form $f^{(n)}(x)=p_{n}(x) f(x)$, where $p_{n}(x)$ is a polynomial. Also, give a rule to compute $p_{n+1}(x)$, given $p_{n}(x)$.
Solution to extra credit problem The claim, proved by induction on n, is that for every positive integer $n, f^{(n)}(x)$ equals $p_{n}(x)$ where $p_{n}(x)$ is a degree n polynomial and,

$$
p_{n+1}(x)=-x p_{n}(x)+p_{n}^{\prime}(x) .
$$

The solution to Problem 2 proves this when $n=1,2$ and 3 . Let n be a positive integer. By way of induction, assume the result is proved for n. Precisely, assume $f^{(n)}(x)$ equals $p_{n}(x) e^{-x^{2} / 2}$ where $p_{n}(x)$ is a degree n polynomial. The goal is to prove the result for $f^{(n+1)}(x)$; precisely, $f^{(n+1)}(x)$ equals $p_{n+1}(x) e^{-x^{2} / 2}$ for a degree $n+1$ polynomial $p_{n+1}(x)$. By definition,

$$
f^{(n+1)}(x)=\frac{d}{d x}\left(f^{(n)}(x)\right) .
$$

By the induction hypothesis, this equals,

$$
\frac{d}{d x}\left(p_{n}(x) e^{-x^{2} / 2}\right)
$$

Let u and v be as above, and set y equals $p_{n}(x) v$. So y equals $f^{(n)}(x)$. By the product rule,

$$
\frac{d y}{d x}=p_{n}^{\prime}(x) v+p_{n}(x) v^{\prime}=p_{n}^{\prime}(x) v+p_{n} \frac{d v}{d x} .
$$

As computed above,

$$
\frac{d v}{d x}=-x e^{-x^{2} / 2}
$$

Substituting in,

$$
\frac{d y}{d x}=p_{n}^{\prime}(x) e^{-x^{2} / 2}+p_{n}(x)\left(-x e^{-x^{2} / 2}\right)=\left(-x p_{n}(x)+p_{n}^{\prime}(x)\right) e^{-x^{2} / 2}
$$

Since $p_{n}(x)$ is a degree n polynomial, $p_{n}^{\prime}(x)$ is a degree $n-1$ polynomial and $-x p_{n}(x)$ is a degree $n+1$ polynomial. Thus the sum $-x p_{n}(x)+p_{n}^{\prime}(x)$ is a degree $n+1$ polynomial. Defining $p_{n+1}(x)$ to be,

$$
p_{n+1}(x)=-x p_{n}(x)+p_{n}^{\prime}(x)
$$

this gives,

$$
f^{(n+1)}(x)=\frac{d y}{d x}=p_{n+1}(x) e^{-x^{2} / 2}
$$

So the result for $n+1$ follows from the result for n. Therefore the result is proved by induction on n. Moreover, this gives the inductive formula for $p_{n}(x)$,

$$
p_{n+1}(x)=-x p_{n}(x)+p_{n}^{\prime}(x)
$$

Problem 3(15 points) A function $y=f(x)$ satisfies the implicit equation,

$$
2 x^{3}-9 x y+2 y^{3}=0
$$

The graph contains the point $(1,2)$. Find the equation of the tangent line to the graph of $y=f(x)$ at $(1,2)$.

Solution to Problem 3 Differentiating both sides of the equation gives,

$$
\frac{d}{d x}\left(2 x^{3}-9 x y+2 y^{3}\right)=\frac{d}{d x}(0)=0
$$

Because the derivative is linear,

$$
\frac{d}{d x}\left(2 x^{3}-9 x y+2 y^{3}\right)=2 \frac{d\left(x^{3}\right)}{d x}-9 \frac{d(x y)}{d x}+2 \frac{d\left(y^{3}\right)}{d x}
$$

Of course $d\left(x^{3}\right) / d x$ equals $3 x^{2}$. By the product rule,

$$
\frac{d(x y)}{d x}=\frac{d(x)}{d x} y+x \frac{d y}{d x}=y+x \frac{d y}{d x} .
$$

For the last term, the chain rule gives,

$$
\frac{d\left(y^{3}\right)}{d x}=\frac{d\left(y^{3}\right)}{d y} \frac{d y}{d x}=3 y^{2} \frac{d y}{d x} .
$$

Substituting in gives,

$$
\frac{d}{d x}\left(2 x^{3}-9 x y+2 y^{3}\right)=2\left(3 x^{2}\right)-9\left(y+x \frac{d y}{d x}\right)+2\left(3 y^{2}\right) \frac{d y}{d x}=\left(6 x^{2}-9 y\right)+\left(6 y^{2}-9 x\right) \frac{d y}{d x}
$$

By the first paragraph, $d / d x\left(2 x^{3}-9 x y+2 y^{3}\right)$ equals 0 . Substituting in gives the equation,

$$
\left(6 x^{2}-9 y\right)+\left(6 y^{2}-9 x\right) \frac{d y}{d x}=0
$$

Subtracting the first term from each side gives,

$$
\left(6 y^{2}-9 x\right) \frac{d y}{d x}=\left(9 y-6 x^{2}\right)
$$

Dividing both sides by $\left(6 y^{2}-9 x\right)$ gives,

$$
\frac{d y}{d x}=\frac{9 y-6 x^{2}}{6 y^{2}-9 x}=\frac{3 y-2 x^{2}}{2 y^{2}-3 x}
$$

Finally, plugging in x equals 1 and y equals 2 gives,

$$
\frac{d y}{d x}=\frac{3(2)-2(1)^{2}}{2(2)^{2}-3(1)}=\frac{6-2}{8-3}=\frac{4}{5}
$$

Therefore, the equation of the tangent line is,

$$
y=\frac{4}{5}(x-1)+2,
$$

which simplifies to,

$$
y=(4 / 5) x+6 / 5
$$

Problem $4(20$ points) The point $(0,4)$ is not on the graph of $y=x+1 / x$, but it is contained in exactly one tangent line to the graph.
(a)(15 points) Find the one value of a for which the tangent line to the graph of $y=x+1 / x$ at ($a, a+1 / a$) contains (0,4).
Hint: You do not need to solve a quadratic equation to find a.
Solution to (a) By the Solution to Problem 1, the derivative of $x+1 / x$ equals,

$$
y^{\prime}=1-\frac{1}{x^{2}} .
$$

Thus the slope of the tangent line to the graph at $x=a$ is,

$$
1-\frac{1}{a^{2}}=\frac{a^{2}-1}{a^{2}} .
$$

Therefore, the equation of the tangent line equals,

$$
y=\frac{a^{2}-1}{a^{2}}(x-a)+\left(a+\frac{1}{a}\right)=\frac{a^{2}-1}{a^{2}} x+\frac{1-a^{2}}{a}+\left(\frac{a^{2}+1}{a}\right) .
$$

This simplifies to give the equation,

$$
y=\frac{a^{2}-1}{a^{2}} x+\frac{2}{a} .
$$

By hypothesis, $(0,4)$ is contained in the tangent line. Plugging in $x=0$ and $y=4$ gives,

$$
4=\frac{\left(a^{2}-1\right)}{a^{2}} 0+\frac{2}{a}=\frac{2}{a} .
$$

Multiplying boths sides by a gives,

$$
4 a=2 .
$$

Dividing both sides by 4 gives,

$$
a=2 / 4=1 / 2 .
$$

(b)(5 points) Write the equation of the corresponding tangent line.

Solution to (b) From the computation above, the equation of the tangent line at $x=a$ is,

$$
y=\frac{\left(a^{2}-1\right)}{a^{2}} x+\frac{2}{a}
$$

Plugging in $a=1 / 2$ gives,

$$
\begin{gathered}
a^{2}-1=\frac{1}{4}-1=-\frac{3}{4}, \\
\frac{a^{2}-1}{a^{2}}=\left(-\frac{3}{4}\right)(4)=-3,
\end{gathered}
$$

and,

$$
\frac{2}{a}=2(2)=4
$$

Therefore the equation of the tangent line equals,

$$
y=-3 x+4
$$

Problem 5(25 points) In an automobile crash-test, a car is accelerated from rest at $2 \mathrm{~m} / \mathrm{s}^{2}$ for 5 seconds and then decelerated at $-4 m / s^{2}$ until it strikes a barrier. The position function is,

$$
s(t)=\left\{\begin{array}{cc}
t^{2} & 0 \leq t<5 \\
-2 t^{2}+A t+B & t \geq 5
\end{array}\right.
$$

(a) (10 points) Assuming that both $s(t)$ and $s^{\prime}(t)$ are continuous at $t=5$, determine A and B.

Solution to (a) Because $s(t)$ is continuous at $t=5$, the left-hand limit and the right-hand limit are equal. The left-hand limit is,

$$
\lim _{t \rightarrow 5^{-}} s(t)=\lim _{t \rightarrow 5^{-}} t^{2}=25
$$

The right-hand limit is,

$$
\lim _{t \rightarrow 5^{+}} s(t)=\lim _{t \rightarrow 5^{+}}\left(-2 t^{2}+A t+B\right)=-2(5)^{2}+A(5)+B=-50+5 A+B
$$

This gives the equation,

$$
25=-50+5 A+B
$$

which simplifies to,

$$
5 A+B=75
$$

The derivative $s^{\prime}(t)$ equals,

$$
s^{\prime}(t)=\left\{\begin{array}{cc}
\left(t^{2}\right)^{\prime} & 0 \leq t<5 \\
\left(-2 t^{2}+A t+B\right)^{\prime} & t>5
\end{array}\right.
$$

which equals,

$$
s^{\prime}(t)=\left\{\begin{array}{cc}
2 t & 0 \leq t<5 \\
-4 t+A & t>5
\end{array}\right.
$$

Because $s^{\prime}(t)$ is continuous at $t=5$, the left-hand limit and the right-hand limit are equal. The left-hand limit is,

$$
\lim _{t \rightarrow 5^{-}} s^{\prime}(t)=\lim _{t \rightarrow 5^{-}} 2 t=2(5)=10
$$

The right-hand limit is,

$$
\lim _{t \rightarrow 5^{+}} s^{\prime}(t)=\lim _{t \rightarrow 5^{+}}(-4 t+A)=-4(5)+A=-20+A
$$

This gives the equation,

$$
10=-20+A
$$

which simplfies to,

$$
A=30
$$

Plugging in $A=30$ to the first equation gives,

$$
5(30)+B=75
$$

which simplifies to,

$$
B=75-5(30)=75-150=-75
$$

Therefore, the solution is,

$$
A=30, B=-75
$$

(b)(15 points) The barrier is located at $s=33$ meters. Determine the velocity of the car when it strikes the barrier. (The quadratic polynomial has whole number roots.)

Solution to (b) For $t>5$, the equation for displacement is,

$$
s(t)=-2 t^{2}+30 t-75
$$

The moment T when the car strikes the barrier is the solution of the equation $s(T)=33$,

$$
-2 T^{2}+30 T-75=33
$$

Subtracting 33 from each side gives the equation,

$$
-2 T^{2}+30 T-108=0
$$

Dividing each side by -2 gives the equation,

$$
T^{2}-15 T+54=0
$$

The fraction 54 factors as $2 \times 27,3 \times 18$ and 6×9. In the last case, the sum of the factors is +15 . Thus the quadratic polynomial factors as,

$$
T^{2}-15 T+54=(T-6)(T-9)
$$

The two possible solutions of $(T-6)(T-9)=0$ are $T=6$ and $T=9$. Since the car cannot crash twice, the car crashes at the moment,

$$
T=6
$$

For $t>5$, the equation of $v(t)=s^{\prime}(t)$ was calculated above to be,

$$
s^{\prime}(t)=-4 t+A=-4 t+30
$$

Plugging in $t=T=6$ gives,

$$
s^{\prime}(6)=-4(6)+30 .
$$

Therefore, at the moment the car crashes into the barrier, the velocity is,

6 meters/second.

Problem 6(15 points) For each of the following functions, compute the derivative. Show all work. (a)(4 points) $y=\left(e^{x}-e^{-x}\right) /\left(e^{x}+e^{-x}\right)$

Solution to (a) Set $u=e^{x}-e^{-x}$ and $v=e^{x}+e^{-x}$. Then $y=u / v$. By the quotient rule, the derivative is,

$$
\frac{d y}{d x}=\frac{1}{v^{2}}\left(\frac{d u}{d x} v-u \frac{d v}{d x}\right)
$$

Using the chain rule,

$$
\frac{d u}{d x}=e^{x}(1)-e^{-x}(-1)=e^{x}+e^{-x}=v
$$

Similarly,

$$
\frac{d v}{d x}=e^{x}(1)+e^{-x}(-1)=e^{x}-e^{-x}=u
$$

Plugging in gives,

$$
\frac{d y}{d x}=\frac{1}{v^{2}}\left(v^{2}-u^{2}\right)
$$

Expanding gives,

$$
v^{2}-u^{2}=\left(e^{x}-e^{-x}\right)^{2}-\left(e^{x}+e^{-x}\right)^{2}=\left[\left(e^{x}\right)^{2}-2 e^{x} e^{-x}+\left(e^{-x}\right)^{2}\right]-\left[\left(e^{x}\right)^{2}+2 e^{x} e^{-x}+\left(e^{-x}\right)^{2}\right] .
$$

Cancelling, this gives,

$$
v^{2}-u^{2}=-4 e^{x} e^{-x}=-4
$$

Therefore, the derivative equals,

$$
\frac{d y}{d x}=-4 / v^{2}=-4 /\left(e^{x}-e^{-x}\right)^{2}
$$

(b) (3 points) $y=x \ln (x)-x$

Solution to (b) Because the derivative is linear,

$$
y^{\prime}=(x \ln (x))^{\prime}-(x)^{\prime}=(x \ln (x))^{\prime}-1
$$

By the product rule,

$$
(x \ln (x))^{\prime}=(x)^{\prime} \ln (x)+x(\ln (x))^{\prime}=1 \ln (x)+x \frac{1}{x}=\ln (x)+1 .
$$

Therefore the derivative is $\ln (x)+1-1$, which is,

$$
y^{\prime}=\ln (x)
$$

(c) (3 points) $y=\sqrt{1+x^{1234}}$

Solution to (c) Set u equals x^{1234}. Set v equals $1+u$, which equals $1+x^{1234}$. Then y equals $v^{1 / 2}$, which equals $\left(1+x^{1234}\right)^{1 / 2}$. By the chain rule,

$$
\frac{d y}{d x}=\frac{d y}{d v} \frac{d v}{d u} \frac{d u}{d x}
$$

By the formula for the derivative of x^{a},

$$
\frac{d u}{d x}=1234 x^{1233}, \frac{d v}{d u}=1, \frac{d y}{d v}=\frac{1}{2} v^{-1 / 2}
$$

Thus the chain rule gives,

$$
\frac{d y}{d x}=\frac{1}{2} v^{-1 / 2}(1)\left(1234 x^{1233}\right)=\frac{1}{2}\left(1+x^{1234}\right)^{-1 / 2}\left(1234 x^{1233}\right) .
$$

This simplifes to give,

$$
y^{\prime}=617 x^{1233} / \sqrt{1+x^{1234}}
$$

(d) (5 points) $y=\log _{10}\left(x^{3}+3 x\right)$.

Solution to (d) The inner term factors as $x^{3}+3 x=x\left(x^{2}+3\right)$. Since $\log _{10}(A B)$ equals $\log _{10}(A)+$ $\log _{10}(B)$, the expression for y simplifies to,

$$
y=\log _{10}\left(x\left(x^{2}+3\right)\right)=\log _{10}(x)+\log _{10}\left(x^{2}+3\right) .
$$

Because the derivative is linear,

$$
y^{\prime}=\left(\log _{10}(x)\right)^{\prime}+\left(\log _{10}\left(x^{2}+3\right)\right)^{\prime}
$$

The formula for the derivative of a logarithm function is,

$$
\frac{d\left(\log _{a}(x)\right)}{d x}=\frac{1}{\ln (a) x} .
$$

Thus,

$$
\left(\log _{10}(x)\right)^{\prime}=\frac{1}{\ln (10) x}
$$

For the second term, set u equals $x^{2}+3$. And set v equals $\log _{10}(u)=\log _{10}\left(x^{2}+3\right)$. By the chain rule,

$$
\frac{d}{d x}\left(\log _{10}\left(x^{2}+3\right)\right)=\frac{d v}{d x}=\frac{d v}{d u} \frac{d u}{d x}
$$

By the formula for the derivative of a logarithm function,

$$
\frac{d v}{d u}=\frac{d}{d u}\left(\log _{10}(u)\right)=\frac{1}{\ln (10) u}
$$

And, of course,

$$
\frac{d u}{d x}=\left(x^{2}+3\right)^{\prime}=2 x
$$

Thus, the derivative is,

$$
\frac{d v}{d x}=\frac{1}{\ln (10) u}(2 x)=\frac{1}{\ln (10)\left(x^{2}+3\right)}(2 x) .
$$

Putting the pieces together,

$$
y^{\prime}=\frac{1}{\ln (10) x}+\frac{2 x}{\ln (10)\left(x^{2}+3\right)}
$$

This simplifies to give,

$$
y^{\prime}=3\left(x^{2}+1\right) /\left(\ln (10) x\left(x^{2}+3\right)\right)
$$

