Solutions to 18.01 Exam 3

Problem 1 (20 points) A particle moves along the positive x-axis with velocity 5 units/second. How fast is the particle moving away from the point $(0,3)$ (which is on the y-axis) when the particle is 7 units away from $(0,3)$?
Solution to Problem 1 The independent variable is time, t. Denote by x the position of the particle on the x-axis. Denote by L the distance of the particle from $(0,3)$. By the Pythagorean theorem,

$$
L^{2}=x^{2}+9 .
$$

Differentiating with respect to t gives,

$$
2 L \frac{d L}{d t}=2 x \frac{d x}{d t} .
$$

Solving gives,

$$
\frac{d L}{d t}=\frac{x}{L} \frac{d x}{d t} .
$$

When L equals 7, L^{2} equals 49 and,

$$
x^{2}=L^{2}-9=49-9=40 .
$$

Thus x equals $2 \sqrt{10}$. By hypothesis, $d x / d t$ equals 5 . Solving gives,

$$
\frac{d L}{d t}=\frac{2 \sqrt{10}}{7} 5=10 \sqrt{10} / 7
$$

Problem 2(30 points) The antiderivative of $1 / \sqrt{1+x^{2}}$ is,

$$
\int \frac{1}{\sqrt{1+x^{2}}} d x=\ln \left(x+\sqrt{x^{2}+1}\right), x>0 .
$$

(a)(20 points) Break the interval $[0, a]$ into a union of n equal subintervals. Using the right endpoint of each subinterval, compute the Riemann sum approximating the integral,

$$
\int_{0}^{a} \frac{1}{\sqrt{1+x^{2}}} d x
$$

Leave your answer in the form of a sum. But simplify as much as possible. Show all work.
Solution to (a) The partition of $[0, a]$ into n equal subintervals has right endpoints,

$$
x_{k}=\frac{k a}{n}, \Delta x_{k}=\frac{a}{n} .
$$

The instructions are to use the right endpoint of the $k^{\text {th }}$ subinterval, i.e., x_{k}. Thus the Riemann sum is,

$$
A=\sum_{k=1}^{n} f\left(x_{k}\right) \Delta x_{k}=\sum_{k=1}^{n} \frac{1}{\sqrt{1+k^{2} a^{2} / n^{2}}} \frac{a}{n} .
$$

Simplifying gives,

$$
\sum_{k=1}^{n} \frac{a}{\sqrt{n^{2}+k^{2} a^{2}}}
$$

(b) (10 points) For an appropriate choice of a, express the following limit in terms of the Riemann sum from (a). Use the formula for the antiderivative to compute the limit.

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{9 n^{2}+16 k^{2}}}
$$

Solution to (b) The sum in the limit can be rewritten as,

$$
\sum_{k=1}^{n} \frac{1}{\sqrt{9 n^{2}+16 k^{2}}}=\sum_{k=1}^{n} \frac{1}{3 \sqrt{n^{2}+k^{2}(4 / 3)^{2}}}=\frac{1}{4} \sum_{k=1}^{n} \frac{4 / 3}{\sqrt{n^{2}+k^{2}(4 / 3)^{2}}}
$$

By the Solution to (a),

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} \frac{a}{\sqrt{n^{2}+k^{2} a^{2}}}=\int_{0}^{a} \frac{1}{\sqrt{1+x^{2}}} d x=\ln \left(a+\sqrt{a^{2}+1}\right) .
$$

Applying this in the case that $a=4 / 3$ gives,

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} \frac{4 / 3}{\sqrt{n^{2}+k^{2}(4 / 3)^{2}}}=\ln \left(4 / 3+\sqrt{(4 / 3)^{2}+1}\right)
$$

Therefore,

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} \frac{1}{\sqrt{9 n^{2}+16 k^{2}}}=\frac{1}{4} \ln \left((4 / 3)+\sqrt{(4 / 3)^{2}+1}\right) .
$$

Since $(4 / 3)^{2}+1$ equals $(5 / 3)^{2}$, and since $4 / 3+5 / 3$ equals 3 , the limit simplifies to,

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} \frac{1}{\sqrt{9 n^{2}+16 k^{2}}}=\ln (3) / 4
$$

Problem 3(25 points) Solve the following separable ordinary differential equation with given initial condition.

$$
\left\{\begin{array}{c}
y^{\prime}(x)=e^{x+2 y} \\
y(0)=0
\end{array}\right.
$$

Solution to Problem 3 Using the exponent rule,

$$
e^{a+b}=e^{a} \cdot e^{b}
$$

the differential equation is equivalent to,

$$
\frac{d y}{d x}=e^{x} \cdot e^{2 y}
$$

This gives an equation of differentials,

$$
e^{-2 y} d y=e^{x} d x
$$

Antidifferentiating gives,

$$
\int e^{-2 y} d y=\int e^{x} d x
$$

which is,

$$
-\frac{1}{2} e^{-2 y}=e^{x}+C
$$

Substituting the initial condition gives the equation for C,

$$
-\frac{1}{2} e^{0}=e^{0}+C .
$$

Solving for C gives,

$$
C=\frac{-3}{2} .
$$

Substituting this in and simplifying gives,

$$
e^{-2 y}=-2 e^{x}+3
$$

Taking logarithms and simplifying gives,

$$
y=-\ln \left(3-2 e^{x}\right) / 2
$$

Problem 4 (25 points) Compute each of the following Riemann integrals. You are not required to show every step. Please do say what method you use to compute the integral.
(a)(5 points)

$$
\int_{0}^{\sqrt{5}} 1+2 x+3 x^{2}+4 x^{3}+5 x^{4} d x
$$

Solution to (a) Using the rule that the antiderivative of x^{a} is $x^{a+1} /(a+1)$ (for $a \neq-1$), the antiderivative of the integrand is,

$$
x+x^{2}+x^{3}+x^{4}+x^{5} .
$$

Using geometric series, this simplifies to,

$$
x\left(1+x+x^{2}+x^{3}+x^{4}\right)=\frac{x\left(x^{5}-1\right)}{x-1} .
$$

Applying the Fundamental Theorem of Calculus,

$$
\int_{0}^{\sqrt{5}} 1+2 x+3 x^{2}+4 x^{3}+5 x^{4} d x=\left(\left.\frac{x\left(x^{5}-1\right)}{x-1}\right|_{0} ^{\sqrt{5}} .\right.
$$

Evaluating at the limits gives,

$$
\frac{\sqrt{5}(25 \sqrt{5}-1)}{\sqrt{5}-1}-\frac{0(0-1)}{0-1}=\frac{\sqrt{5}(25 \sqrt{5}-1)(\sqrt{5}+1)}{4}-0 .
$$

In simplest terms, this gives,

$$
\int_{0}^{\sqrt{5}} 1+2 x+3 x^{2}+4 x^{3}+5 x^{4} d x=30+31 \sqrt{5} .
$$

(b)(5 points)

$$
\int_{0}^{10} \frac{x}{\sqrt{1+x^{2}}} d x
$$

Solution to (b) Make the substitution,

$$
u=1+x^{2}, d u=2 x d x, u(10)=101, u(0)=1
$$

This reduces the original integral to the simpler integral,

$$
\int_{u=1}^{u=101} u^{-1 / 2} \frac{1}{2} d u=\left(\left.u^{1 / 2}\right|_{1} ^{101}\right.
$$

Therefore,

$$
\int_{0}^{10} \frac{x}{\sqrt{1+x^{2}}} d x=\sqrt{101}-1
$$

(c)(5 points)

$$
\int_{-\pi / 2}^{\pi / 2} \sin ^{7}(\theta) d \theta
$$

Solution to (c) The function $\sin (\theta)$ is odd. Therefore the odd power, $\sin ^{7}(\theta)$ is also an odd function. The interval $[-\pi / 2, \pi / 2]$ is symmetric with respect to the origin. Therefore the integral of $\sin ^{7}(\theta)$ over $[-\pi / 2,0]$ equals the negative of the integral of $\sin ^{7}(\theta)$ over $[0, \pi / 2]$. So the two integrals cancel to give,

$$
\int_{-\pi / 2}^{\pi / 2} \sin ^{7}(\theta) d \theta=0
$$

Alternatively, rewrite the integral as,

$$
\int_{-\pi / 2}^{\pi / 2}\left(\sin ^{2}(\theta)\right)^{3} \sin (\theta) d \theta
$$

Next use the rule, $\sin ^{2}(\theta)=1-\cos ^{2}(\theta)$ to get,

$$
\int_{-\pi^{2}}^{\pi^{2}}\left(1-\cos ^{2}(\theta)\right)^{3} \sin (\theta) d \theta
$$

Make the substitution,

$$
u=\cos (\theta), d u=-\sin (\theta) d \theta, u(-\pi / 2)=0, u(\pi / 2)=0
$$

to reduce the original integral to,

$$
\int_{u=0}^{u=0} u^{3}(-1) d u
$$

Since the upper and lower limit are each 0, again this gives,

$$
\int_{-\pi / 2}^{\pi / 2} \sin ^{7}(\theta) d \theta=0
$$

(d)(5 points)

$$
\int_{1}^{2} \frac{\ln \left(t^{2}\right)}{t} d t
$$

Solution to (d) Use the logarithm rule,

$$
\ln \left(a^{b}\right)=b \ln (a),
$$

to reduce the integral to,

$$
\int_{1}^{2} \frac{2 \ln (t)}{t} d t
$$

Next make the substitution,

$$
u=\ln (t), d u=d t / t, u(1)=\ln (1)=0, u(2)=\ln (2)
$$

This reduces the original integral to the simpler integral,

$$
\int_{u=0}^{u=\ln (2)} 2 u d u=\left(\left.u^{2}\right|_{u=0} ^{u=\ln (2)}\right.
$$

Therefore,

$$
\int_{1}^{2} \frac{\ln \left(t^{2}\right)}{t} d t=(\ln (2))^{2}
$$

(e)(5 points)

$$
\int_{0}^{\pi / 4} \frac{\sin (2 t)}{\cos (t)} d t
$$

Solution to (e) Use the angle addition formula,

$$
\sin (a+b)=\sin (a) \cos (b)+\cos (a) \sin (b),
$$

to reduce the numerator to,

$$
\sin (2 t)=2 \sin (t) \cos (t)
$$

Thus the integral is,

$$
\int_{0}^{\pi / 4} \frac{2 \sin (t) \cos (t)}{\cos (t)} d t=\int_{0}^{\pi / 4} 2 \sin (t) d t
$$

Applying the Fundamental Theorem of Calculus gives,

$$
\int_{0}^{\pi / 4} 2 \sin (t) d t=\left(-\left.2 \cos (t)\right|_{0} ^{\pi / 4}=2 \cos (0)-2 \cos (\pi / 4)\right.
$$

Therefore,

$$
\int_{0}^{\pi / 4} \frac{\sin (2 t)}{\cos (t)} d t=2-\sqrt{2}
$$

