18.01 Exam 5

Problem 1(25 points) Use integration by parts to compute the antiderivative,

$$
\int x^{3} e^{-x^{2}} d x
$$

Solution to Problem 1 The derivative of $e^{-x^{2}}$ is $-2 x e^{-x^{2}}$. Thus, set

$$
\begin{array}{cc}
u=x^{2}, & d v=x e^{-x^{2}} d x \\
d u=2 x d x & v=-e^{-x^{2}} / 2 .
\end{array}
$$

Then, by integration by parts,

$$
\begin{gathered}
\int u d v=u v-\int v d u \\
\int x^{3} e^{-x^{2}} d x=-\frac{1}{2} x^{2} e^{-x^{2}}+\int x e^{-x^{2}} d x
\end{gathered}
$$

As computed above, the derivative of $e^{-x^{2}}$ is $-2 x e^{-x^{2}}$. Thus the new integral is $-e^{-x^{2}} / 2+C$. Therefore,

$$
\int x^{3} e^{-x^{2}} d x=-\frac{1}{2} x^{2} e^{-x^{2}}-\frac{1}{2} e^{-x^{2}}=-\left(x^{2}+1\right) e^{-x^{2}} / 2
$$

Problem 2(20 points) Use polynomial division and factoring to compute the antiderivative,

$$
\int \frac{x^{3}-1}{x^{2}-3 x+2} d x
$$

You will not need to use partial fractions (though you are free to do so).
Solution to Problem 2 By the polynomial division algorithm,

$$
x^{3}-1=(x+3)\left(x^{2}-3 x+2\right)+(7 x-7) .
$$

Thus the fraction is,

$$
\frac{x^{3}-1}{x^{2}-3 x+2}=x+3+\frac{7(x-1)}{x^{2}-3 x+2} .
$$

The denominator of the new fraction factors as,

$$
x^{2}-3 x+2=(x-1)(x-2) .
$$

Thus the original fraction is,

$$
x+3+\frac{7(x-1)}{(x-1)(x-2)}=x+3+\frac{7}{x-2} .
$$

Therefore the antiderivative is,

$$
\int x+3+\frac{7}{x-2} d x=(1 / 2) x^{2}+3 x+7 \ln (|x-2|)+C .
$$

Problem 3(20 points)
(a)(15 points) Find the partial fraction decomposition of,

$$
\frac{x+3}{x^{2}-2 x+1} .
$$

Solution to (a) Using the quadratic formula, $x^{2}-2 x+1$ has only the root 1 . Thus it is,

$$
x^{2}-2 x+1=(x-1)^{2}
$$

So the partial fraction decomposition has the form,

$$
\frac{x+3}{x^{2}-2 x+1}=\frac{A}{(x-1)^{2}}+\frac{B}{x-1},
$$

for some choice of A and B. By the Heaviside cover-up method, A equals,

$$
\left(x+\left.3\right|_{x=1}=4 .\right.
$$

Thus the partial fraction decomposition is,

$$
\frac{x+3}{x^{2}-2 x+1}=\frac{4}{(x-1)^{2}}+\frac{B}{x-1} .
$$

Plugging in $x=0$ gives,

$$
3=\left.\frac{x+3}{x^{2}-2 x+1}\right|_{x=0}=\frac{4}{(0-1)^{2}}+\frac{B}{0-1}=4-B
$$

Therefore B equals 1. So the partial fraction decomposition is,

$$
\frac{x+3}{x^{2}-2 x+1}=4 /(x-1)^{2}+1 /(x-1)
$$

(b)(5 points) Use your answer from (a) to compute the antiderivative of

$$
\int \frac{x+3}{x^{2}-2 x+1} d x
$$

Solution to (b) By the Solution to (a), the integral is,

$$
\int \frac{x+3}{x^{2}-2 x+1} d x=\int \frac{4}{(x-1)^{2}}+\frac{1}{x-1} d x
$$

The second integral is easily computed and gives,

$$
\int \frac{x+3}{x^{2}-2 x+1} d x=-4 /(x-1)+\ln (|x-1|)+C .
$$

Problem 4 (25 points) Let a be a positive real number.
(a)(3 points) Determine the range of x on which $2 a x-x^{2}$ is nonnegative.

Solution to (a) Completing the square gives,

$$
-x^{2}+2 a x=-(x-a)^{2}+a^{2} .
$$

Therefore the expression is nonnegative when,

$$
-(x-a)^{2}+a^{2} \geq 0 \Leftrightarrow a^{2} \geq(x-a)^{2}
$$

Taking square roots, the expression is nonnegative when,

$$
a \geq x-a \geq-a
$$

This simplifies to,

$$
0 \leq x \leq 2 a
$$

(b)(22 points) For that range, compute the antiderivative,

$$
\int \sqrt{2 a x-x^{2}} d x .
$$

Solution to (b) Begin by making the linear change of variables,

$$
u=x-a, \quad d u=d x
$$

The new integral is,

$$
\int \sqrt{a^{2}-u^{2}} d u
$$

This integral can be computed using an inverse trigonometric substitution,

$$
u=a \sin (\theta), \quad d u=a \cos (\theta) d \theta
$$

Plugging in, the new integral is,

$$
\int \sqrt{a^{2}\left(1-\sin ^{2}(\theta)\right)}(a \cos (\theta) d \theta)=a^{2} \int \cos ^{2}(\theta) d \theta
$$

This can be solved either using integration by parts or using the half-angle formula from trigonometry. The half-angle formula is decidedly faster and gives,

$$
\cos ^{2}(\theta)=\frac{1+\cos (2 \theta)}{2}
$$

Substituting this in, the new integral is,

$$
a^{2} \int \frac{1}{2}+\frac{1}{2} \cos (2 \theta) d \theta=a^{2}\left(\frac{\theta}{2}+\frac{1}{4} \sin (2 \theta)\right)+C .
$$

Using the double-angle formula, this simplifies to,

$$
a^{2}\left(\frac{\theta}{2}+\frac{1}{2} \sin (\theta) \cos (\theta)\right)+C
$$

Back-substituting for u gives,

$$
\frac{a^{2}}{2} \sin ^{-1}(u / a)+\frac{1}{2} u \sqrt{a^{2}-u^{2}}+C .
$$

Back-substituting for x gives,

$$
\int \sqrt{2 a x-x^{2}} d x=\left(a^{2} \sin ^{-1}(u / a)+(x-a) \sqrt{2 a x-x^{2}}\right) / 2+C .
$$

Problem 5(10 points) Compute the following derivatives. Please show all work to receive full credit.
(a) (5 points)

$$
y=\sinh (t)=\frac{e^{t}-e^{-t}}{2}, \quad \frac{d y}{d x}=?
$$

Solution to (a) The derivative should be with respect to t. Using the chain rule, it is,

$$
\frac{d}{d t}\left(\frac{e^{t}}{2}-\frac{e^{-t}}{2}\right)=\left(\frac{1}{2} e^{t}-\frac{1}{2}\left(-e^{-t}\right)\right)=\cosh (t)
$$

(b)(5 points)

$$
y=\sinh ^{-1}(x)=\ln \left(x+\sqrt{x^{2}+1}\right), \quad \frac{d y}{d x}=?
$$

There are at least 2 methods. You may use the one you prefer.
Solution to (b) The formula for the derivative of an inverse function is,

$$
\frac{d f^{-1}}{d x}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

As computed above, the derivative of $\sinh (x)$ is $\cosh (x)$. Thus the derivative is,

$$
\frac{1}{\cosh \left(\sinh ^{-1}(x)\right)}
$$

Using the identity $\cosh ^{2}(x)-\sinh ^{2}(x)=1$, the denominator is,

$$
\cosh \left(\sinh ^{-1}(x)\right)=\sqrt{1+\left[\sinh \left(\sinh ^{-1}(x)\right)\right]^{2}}=\sqrt{1+x^{2}}
$$

Therefore the derivative is,

$$
\frac{d}{d x} \sinh ^{-1}(x)=1 / \sqrt{1+x^{2}}
$$

Extra credit(5 points)

$$
y=\sin \left(\tan ^{-1}(2 x)\right), \quad \frac{d y}{d x}=?
$$

Only solutions in simplest terms will be accepted.
Solution to the extra credit problem Denote by θ the angle $\tan ^{-1}(2 x)$. There is a right triangle with angle θ having opposite side $2 x$ and adjacent side 1 . Therefore the hypotenuse has length,

$$
\sqrt{(2 x)^{2}+(1)^{2}}=\sqrt{4 x^{2}+1}
$$

Since $\sin (\theta)$ is the ratio of the opposite side by the hypotenuse,

$$
\sin \left(\tan ^{-1}(2 x)\right)=\frac{2 x}{\sqrt{4 x^{2}+1}}
$$

Using the quotient rule and the chain rule,

$$
\frac{d}{d x}\left(\frac{2 x}{\sqrt{4 x^{2}+1}}\right)=\frac{1}{4 x^{2}+1}\left((2) \sqrt{4 x^{2}+1}-(2 x)\left(\frac{1}{2 \sqrt{4 x^{2}+1}}(8 x)\right)\right)=\frac{2}{\left(4 x^{2}+1\right)^{3 / 2}}\left(\left(4 x^{2}+1\right)-4 x^{2}\right) .
$$

Therefore the derivative is,

$$
\frac{d}{d x} \sin \left(\tan ^{-1}(2 x)\right)=2 /\left(4 x^{2}+1\right)^{3 / 2}
$$

