18.01 PRACTICE FINAL, FALL 2003

Problem 1 Find the following definite integral using integration by parts.

$$
\int_{0}^{\frac{\pi}{2}} x \sin (x) d x
$$

Solution Let $u=x, d v=\sin (x) d x$. The $d u=d x, v=-\cos (x)$. So $\int u d v=u v-\int v d u$, i.e.,

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{2}} x \sin (x) d x=\left(-\left.x \cos (x)\right|_{0} ^{\frac{\pi}{2}}+\int_{0}^{\frac{\pi}{2}} \cos (x) d x=\right. \\
& \left(-\frac{\pi}{2} \cdot 0+0 \cdot 1\right)+\left(\left.\sin (x)\right|_{0} ^{\frac{\pi}{2}}=0+(1-0)=1 .\right.
\end{aligned}
$$

Problem 2 Find the following antiderivative using integration by parts.

$$
\int x \sin ^{-1}(x) d x
$$

Solution First substitute $x=\sin (\theta), d x=\cos (\theta) d \theta$. Then the integral becomes,

$$
\int \theta \sin (\theta) \cos (\theta) d \theta
$$

Of course $\sin (\theta) \cos (\theta)=\frac{1}{2} \sin (2 \theta)$. Thus we need to compute,

$$
\int \frac{1}{2} \theta \sin (2 \theta) d \theta
$$

Set $u=\frac{1}{2} \theta, d v=\sin (2 \theta) d \theta$. Then $d u=\frac{1}{2} d \theta$ and $v=-\frac{1}{2} \cos (2 \theta)$. So $\int u d v=u v-\int v d u$, i.e.,

$$
\begin{array}{r}
\int \frac{1}{2} \theta \sin (2 \theta) d \theta=-\frac{1}{4} \theta \cos (2 \theta)+\frac{1}{4} \int \cos (2 \theta) d \theta= \\
-\frac{1}{4} \theta \cos (2 \theta)+\frac{1}{8} \sin (2 \theta)+C .
\end{array}
$$

Using trigonometric formulas, this equals,

$$
-\frac{1}{4} \theta\left(1-2 \sin ^{2}(\theta)\right)+\frac{1}{4} \sin (\theta) \sqrt{1-\sin ^{2}(\theta)}+C .
$$

Back-substituting, $\sin (\theta)=x$, gives the final answer,

$$
-\frac{1}{4}\left(1-2 x^{2}\right) \sin ^{-1}(x)+\frac{1}{4} x \sqrt{1-x^{2}}+C .
$$

Problem 3 Use L'Hospital's rule to compute the following limits.
(a) $\lim _{x \rightarrow 0} \frac{a^{x}-b^{x}}{x}, \quad 0<a<b$.
(b) $\lim _{x \rightarrow 1} \frac{4 x^{3}-5 x+1}{\ln x}$.

Solution (a). As x approaches 0 , both the numerator and denominator approach 0 . The corresponding derivatives are,

$$
\frac{d}{d x}\left(a^{x}-b^{x}\right)=\ln (a) a^{x}-\ln (b) b^{x}, \quad \frac{d}{d x}(x)=1 .
$$

Therefore, by L'Hospital's rule,

$$
\lim _{x \rightarrow 0} \frac{a^{x}-b^{x}}{x}=\lim _{x \rightarrow 0} \frac{\ln (a) a^{x}-\ln (b) b^{x}}{1}=\ln (a)-\ln (b) .
$$

Date: Fall 2003.
(b). As x approaches 1 , the numerator approaches $4-5+1=0$, and the denominator approaches $\ln (1)=0$. The corresponding derivatives are,

$$
\frac{d}{d x}\left(4 x^{3}-5 x+1\right)=12 x^{2}-5, \quad \frac{d}{d x} \ln (x)=\frac{1}{x} .
$$

Therefore, by L'Hospital's rule,

$$
\lim _{x \rightarrow 1} \frac{4 x^{3}-5 x+1}{\ln (x)}=\lim _{x \rightarrow 1} \frac{12 x^{2}-5}{\frac{1}{x}}=\frac{12-5}{1}=7 .
$$

Problem 4 Determine whether the following improper integral converges or diverges.

$$
\int_{1}^{\infty} e^{-x^{2}} d x
$$

(Hint: Compare with another function.)
Solution Because the integrand is nonnegative, the integral converges if and only if it is bounded. Therefore the comparison test applies. For $x>1, x^{2}>x$. Therefore $-x^{2}<-x$ and $0 \leq e^{-x^{2}}<e^{-x}$. Integrating,

$$
\int_{1}^{\infty} e^{-x} d x=\left(-\left.e^{-x}\right|_{1} ^{\infty}=\left(0+e^{-1}\right)=e^{-1}<\infty\right.
$$

Therefore, also $\int_{1}^{\infty} e^{-x^{2}} d x$ converges (and is bounded above by e^{-1}).
Problem 5 You wish to design a trash can that consists of a base that is a disk of radius r, cylindrical walls of height h and radius r, and the top consists of a hemispherical dome of radius r (there is no disk between the top of the walls and the bottom of the dome; the dome rests on the top of the walls). The surface area of the can is a fixed constant A. What ratio of h to r will give the maximum volume for the can? You may use the fact that the surface area of a hemisphere of radius r is $2 \pi r^{2}$, and the volume of a hemisphere is $\frac{2}{3} \pi r^{3}$.
Solution The area of the base is πr^{2}. The area of the sides are $2 \pi r h$. The area of the dome is $2 \pi r^{2}$. Therefore we have the equation,

$$
A=\pi r^{2}+2 \pi r h+2 \pi r^{2}=\pi r(3 r+2 h)
$$

It follows that $h=\frac{A}{2 \pi r}-\frac{3 r}{2}$. The volume of the cylindrical portion of the can is the area of the base times the height, i.e., $\pi r^{2} h$. The area of the dome of the can is $\frac{2}{3} \pi r^{3}$. Therefore the total volume of the can is,

$$
\begin{array}{r}
V(r)=\pi r^{2}\left(\frac{A}{2 \pi r}-\frac{3 r}{2}\right)+\frac{2}{3} \pi r^{3}= \\
\frac{A r}{2}-\frac{5 \pi r^{3}}{6} .
\end{array}
$$

The endpoints for r are $r=0$ and $r=\sqrt{\frac{A}{3 \pi}}$. The critical points for r occur when,

$$
\frac{d V}{d r}=\frac{A}{2}-\frac{5 \pi r^{2}}{2}=0
$$

i.e., $A=5 \pi r^{2}$. Since $A=3 \pi r^{2}+2 \pi r h$, we conclude that $2 \pi r h=A-3 \pi r^{2}=2 \pi r^{2}$. Cancelling, we have that $h=r$. This is contained in the interval for r, moreover geometric reasoning (or the first derivative test) shows this is a maximum for V. Therefore the maximum volume is obtained when $h=r$.
Problem 6 A point on the unit circle in the $x y$-plane moves counterclockwise at a fixed rate of 1 radian . At the moment when the angle of the point is $\theta=\frac{\pi}{4}$, what is the rate of change of the distance from the particle to the y-axis?

Solution The coordinates of the point are $(\cos (\theta), \sin (\theta))$. The distance from the y-axis is the absolute value of the x-coordinate. Since the point is in the $1^{\text {st }}$ quadrant, this is just $x=\cos (\theta)$. Therefore the rate of change of the distance is,

$$
\frac{d x}{d t}=\frac{d x}{d \theta} \cdot \frac{d \theta}{d t}=-\sin (\theta) \cdot 1 \frac{\text { radian }}{\text { second }}=-\frac{1}{\sqrt{2}} \frac{\text { radian }}{\text { second }} .
$$

Problem 7 Compute the following integral using a trigonometric substitution. Don't forget to back-substitute.

$$
\int \frac{x^{2}}{\sqrt{1-x^{2}}} d x
$$

Hint: Recall the half-angle formulas, $\cos ^{2}(\theta)=\frac{1}{2}(1+\cos (2 \theta)), \sin ^{2}(\theta)=\frac{1}{2}(1-\cos (2 \theta))$.
Solution This integral calls for a trigonometric substitution, $x=\sin (\theta), d x=\cos (\theta) d \theta$. The integral becomes,

$$
\int \frac{\sin ^{2}(\theta)}{\cos (\theta)} \cos (\theta) d \theta=\int \sin ^{2}(\theta) d \theta
$$

By the half-angle formulas, this is,

$$
\int \frac{1}{2}(1-\cos (2 \theta)) d \theta=\frac{1}{2}\left(\theta-\frac{1}{2} \sin (2 \theta)\right)+C .
$$

Using the double-angle formula, $\sin (2 \theta)=2 \sin (\theta) \cos (\theta)$, and back-substituting $\sin (\theta)=x$ yields,

$$
\frac{1}{2} \sin ^{-1}(x)-\frac{1}{2} x \sqrt{1-x^{2}}+C
$$

Problem 8 Compute the volume of the solid of revolution obtained by rotating about the x-axis the region in the $1^{\text {st }}$ quadrant of the $x y$-plane bounded by the axes and the curve $x^{4}+r^{2} y^{2}=r^{4}$.
Solution The curve intersects the y-axis when $r^{2} y^{2}=r^{4}$, i.e. $y=r$. The curve intersects the x-axis when $x^{4}=r^{4}$, i.e. $x=r$. So the endpoints of the curve are $(0, r)$ and $(r, 0)$. Using the disk method, the volume of the solid is,

$$
\int_{x=0}^{x=r} \pi y^{2} d x
$$

Since $y^{2}=r^{2}-\frac{x^{4}}{r^{2}}$, the volume is,

$$
V=\int_{x=0}^{x=r} \pi r^{2}-\frac{\pi x^{4}}{r^{2}} d x=\left(\pi r^{2} x-\left.\frac{\pi x^{5}}{5 r^{2}}\right|_{0} ^{r} .\right.
$$

This evaluates to $\pi r^{3}-\frac{1}{5} \pi r^{3}=\frac{4}{5} \pi r^{3}$.
Problem 9 Compute the area of the surface of revolution obtained by rotating about the y-axis the portion of the lemniscate $r^{2}=2 a^{2} \cos (2 \theta)$ in the $1^{\text {st }}$ quadrant, i.e., $0 \leq \theta \leq \frac{\pi}{4}$.
Solution The polar equation for arclength is $d s^{2}=d r^{2}+r^{2} d \theta^{2}$, which is equivalent to $r^{2} d s^{2}=$ $r^{2} d r^{2}+r^{4} d \theta^{2}$. By implicit differentiation,

$$
2 r d r=-4 a^{2} \sin (2 \theta) d \theta, \quad r^{2} d r^{2}=4 a^{4} \sin ^{2}(2 \theta) d \theta^{2}
$$

Therefore,

$$
r^{2} d s^{2}=r^{2} d r^{2}+r^{4} d \theta^{2}=4 a^{4} \sin ^{2}(2 \theta) d \theta^{2}+4 a^{4} \cos ^{2}(2 \theta) d \theta^{2}=4 a^{4} d \theta^{2}
$$

So $d s=\frac{2 a^{2}}{r} d \theta$.
The area of the surface of revolution is given by,

$$
\int 2 \pi x d s=\int_{\theta=0}^{\theta=\frac{\pi}{4}} 2 \pi r \cos (\theta) \frac{2 a^{2}}{r} d \theta=\int_{3}^{\frac{\pi}{4}} 4 \pi a^{2} \cos (\theta) d \theta=\left(\left.4 \pi a^{2} \sin (\theta)\right|_{0} ^{\frac{\pi}{4}}\right.
$$

Therefore the surface area is $\frac{4 \pi}{\sqrt{2}} a^{2}$.
Problem 10 Compute the area of the lune that is the region in the $1^{\text {st }}$ and $3^{\text {rd }}$ quadrants contained inside the circle with polar equation $r=2 a \cos (\theta)$ and outside the circle with polar equation $r=a$.

Solution Setting $2 a \cos (\theta)$ equal to a, the points of intersection occur when $2 \cos (\theta)=1$, i.e. $\theta=-\frac{\pi}{3}$ and $\theta=+\frac{\pi}{3}$. So the lune is the region between the two graphs for $-\frac{\pi}{3} \leq \theta \leq \frac{\pi}{3}$. The outer curve is $r_{o}=2 a \cos (\theta)$ and the inner curve is $r_{i}=a$. The formula for the area between two polar curves is

$$
\text { Area }=\int \frac{1}{2}\left(r_{o}^{2}-r_{i}^{2}\right) d \theta
$$

In this case, the area is,

$$
\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{1}{2}\left(4 a^{2} \cos ^{2}(\theta)-a^{2}\right) d \theta=a^{2} \int_{0}^{\frac{\pi}{3}}\left(4 \cos ^{2}(\theta)-1\right) d \theta
$$

To evaluate this, use the half-angle formula, $\cos ^{2}(\theta)=\frac{1}{2}(1+\cos (2 \theta))$. The integral becomes,

$$
a^{2} \int_{0}^{\frac{\pi}{3}}(2+2 \cos (2 \theta)-1) d \theta=a^{2}\left(\theta+\left.\sin (2 \theta)\right|_{0} ^{\frac{\pi}{3}}\right.
$$

Therefore the area is $a^{2}\left(\frac{\pi}{3}+\frac{\sqrt{3}}{2}\right)$, i.e. $\frac{2 \pi+3 \sqrt{3}}{6} a^{2}$.
Problem 11 Find the equation of every tangent line to the hyperbola C with equation $y^{2}-x^{2}=1$, that contains the point $\left(0, \frac{1}{2}\right)$.

Solution By implicit differentiation,

$$
2 y \frac{d y}{d x}-2 x=0, \quad \frac{d y}{d x}=\frac{x}{y}
$$

Therefore, the slope of the tangent line to C at $\left(x_{0}, y_{0}\right)$ is $\frac{x_{0}}{y_{0}}$. So the equation of the tangent line to C at $\left(x_{0}, y_{0}\right)$ is,

$$
\left(y-y_{0}\right)=\frac{x_{0}}{y_{0}}\left(x-x_{0}\right)
$$

If the tangent line contains the point $\left(0, \frac{1}{2}\right)$, then $\left(x_{0}, y_{0}\right)$ satisfies the equation,

$$
\left(\frac{1}{2}-y_{0}\right)=\frac{x_{0}}{y_{0}}\left(0-x_{0}\right), \quad \frac{y_{0}}{2}-y_{0}^{2}=-x_{0}^{2}
$$

Of course also $y_{0}^{2}-x_{0}^{2}=1$, therefore $\frac{y_{0}}{2}=y_{0}^{2}-x_{0}^{2}=1$. So $y_{0}=2$. The two solutions of x_{0} are $x_{0}=\sqrt{3}$ and $x_{0}=-\sqrt{3}$. The equations of the corresponding tangent lines are,

$$
\left\{\begin{aligned}
(y-2) & = \\
(y-2) & =-\frac{\sqrt{3}}{2}(x-\sqrt{3}) \\
2 & x+\sqrt{3})
\end{aligned}\right.
$$

Problem 12 Compute each of the following integrals.
(a) $\int \sec ^{3}(\theta) \tan (\theta) d \theta$.
(b) $\int \frac{x-1}{x(x+1)^{2}} d x$.
(c) $\int \frac{2 x-1}{2 x^{2}-2 x+3} d x$.
(d) $\int \sqrt{e^{3 x}} d x$.

Solution (a). Substituting $u=\sec (\theta), d u=\sec (\theta) \tan (\theta) d \theta$, the integral becomes,

$$
\int u^{2} d u=\frac{1}{3} u^{3}+C=\frac{1}{3} \sec ^{3}(\theta)+C .
$$

(b). This is a proper rational function. Use a partial fractions expansion,

$$
\frac{x-1}{x(x+1)^{2}}=\frac{A}{x}+\frac{B}{x+1}+\frac{C}{(x+1)^{2}} .
$$

By the Heaviside cover-up method, $A=-1$ and $C=\frac{-2}{-1}=2$. This only leaves B to compute. Plug in $x=1$ to get,

$$
0=\frac{-1}{1}+\frac{B}{2}+\frac{2}{2^{2}}=\frac{B}{2}-\frac{1}{2}, \quad B=1 .
$$

So the partial fraction decomposition is,

$$
\frac{x-1}{x(x+1)^{2}}=\frac{-1}{x}+\frac{1}{x+1}+\frac{2}{(x+1)^{2}} .
$$

Thus the antiderivative is,

$$
\int \frac{-1}{x}+\frac{1}{x+1}+\frac{2}{(x+1)^{2}} d x=-\ln (x)+\ln (x+1)-\frac{2}{(x+1)}+C^{\prime}
$$

(c). The derivative of the denominator is $4 x-2$. This is twice the numerator. Substituting $u=2 x^{2}-2 x+3, d u=(4 x-2) d x$, the integral becomes,

$$
\int \frac{1}{u}\left(\frac{1}{2} d u\right)=\frac{1}{2} \ln (u)+C=\frac{1}{2} \ln \left(2 x^{2}-2 x+3\right)+C .
$$

(d). Of course $\sqrt{e^{3 x}}=e^{\frac{3}{2} x}$. Therefore the antiderivative is,

$$
\int e^{\frac{3}{2} x} d x=\frac{2}{3} e^{\frac{3}{2} x}+C .
$$

