18.01 PRACTICE FINAL, FALL 2003

Problem 1 Find the following definite integral using integration by parts.

$$
\int_{0}^{\frac{\pi}{2}} x \sin (x) d x
$$

Problem 2 Find the following antiderivative using integration by parts.

$$
\int x \sin ^{-1}(x) d x
$$

Problem 3 Use L'Hospital's rule to compute the following limits.
(a) $\lim _{x \rightarrow 0} \frac{a^{x}-b^{x}}{x}, \quad 0<a<b$.
(b) $\lim _{x \rightarrow 1} \frac{4 x^{3}-5 x+1}{\ln x}$.

Problem 4 Determine whether the following improper integral converges or diverges.

$$
\int_{1}^{\infty} e^{-x^{2}} d x
$$

(Hint: Compare with another function.)
Problem 5 You wish to design a trash can that consists of a base that is a disk of radius r, cylindrical walls of height h and radius r, and the top consists of a hemispherical dome of radius r (there is no disk between the top of the walls and the bottom of the dome; the dome rests on the top of the walls). The surface area of the can is a fixed constant A. What ratio of h to r will give the maximum volume for the can? You may use the fact that the surface area of a hemisphere of radius r is $2 \pi r^{2}$, and the volume of a hemisphere is $\frac{2}{3} \pi r^{3}$.
Problem 6 A point on the unit circle in the $x y$-plane moves counterclockwise at a fixed rate of $1 \frac{\text { radian }}{\text { second }}$. At the moment when the angle of the point is $\theta=\frac{\pi}{4}$, what is the rate of change of the distance from the particle to the y-axis?
Problem 7 Compute the following integral using a trigonometric substitution. Don't forget to back-substitute.

$$
\int \frac{x^{2}}{\sqrt{1-x^{2}}} d x
$$

Hint: Recall the half-angle formulas, $\cos ^{2}(\theta)=\frac{1}{2}(1+\cos (2 \theta)), \sin ^{2}(\theta)=\frac{1}{2}(1-\cos (2 \theta))$.
Problem 8 Compute the volume of the solid of revolution obtained by rotating about the x-axis the region in the $1^{\text {st }}$ quadrant of the $x y$-plane bounded by the axes and the curve $x^{4}+r^{2} y^{2}=r^{4}$.
Problem 9 Compute the area of the surface of revolution obtained by rotating about the y-axis the portion of the lemniscate $r^{2}=2 a^{2} \cos (2 \theta)$ in the $1^{\text {st }}$ quadrant, i.e., $0 \leq \theta \leq \frac{\pi}{4}$.
Problem 10 Compute the area of the lune that is the region in the $1^{\text {st }}$ and $3^{\text {rd }}$ quadrants contained inside the circle with polar equation $r=2 a \cos (\theta)$ and outside the circle with polar equation $r=a$.
Problem 11 Find the equation of every tangent line to the hyperbola C with equation $y^{2}-x^{2}=1$, that contains the point $\left(0, \frac{1}{2}\right)$.

Date: Fall 2003.

Problem 12 Compute each of the following integrals.
(a) $\int \sec ^{3}(\theta) \tan (\theta) d \theta$.
(b) $\int \frac{x-1}{x(x+1)^{2}} d x$.
(c) $\int \frac{2 x-1}{2 x^{2}-2 x+3} d x$.
(d) $\int \sqrt{e^{3 x}} d x$.

