MIT OpenCourseWare http://ocw.mit.edu

18.01 Single Variable Calculus

Fall 2006

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Problem 1. (10 pts.) Find the tangent line to $y=\frac{1}{3} x^{2}$ at $x=1$
Problem 2. Find the derivative of the following functions:
a. (7 pts.) $\frac{x}{\sqrt{1-x}}$
b. (8 pts). $\frac{\cos (2 x)}{x}$
c. (5 pts). $e^{2 f(x)}=\mathrm{g}(\mathrm{x})$
d. (5 pts.) $\ln (\sin x)$

Problem 3. (15 pts.) Find $\frac{d y}{d x}$ for the function for the function y defined implicitly by

$$
y^{4}+x y=4 \text { at } x=3, y=1
$$

Problem 4. (15 pts.) Draw the graph of the derivative of the function (qualitatively accurate) directly under the graph of the function.

Problem 5. (15 pts) Let

$$
f x= \begin{cases}a x+b & x<1 \\ x^{4}+x+1 & x \geq 1\end{cases}
$$

Find all a and b such that the function $f(x)$ is differentiable.

Problem 6. Evaluate these limits by relating them to a derivative.
a. (5 pts.) Evaluate $\lim _{x \rightarrow 0} \frac{(1+2 x)^{10}-1}{x}$
b. (5 pts.) Evaluate $\lim _{x \rightarrow 0} \frac{\sqrt{\cos x}-1}{x}$

Problem 7. (10 pts.) Derive the formula $\frac{d}{d x} a^{x}=M(a) a^{x}$ directly from the definition of the derivative, and identify $M(a)$ as a limit.

