MIT OpenCourseWare http://ocw.mit.edu

18.01 Single Variable Calculus

Fall 2006

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.01 Exam 4

Problem 1. (15 points) Evaluate $\int \frac{d x}{x(x+1)^{2}}$

Problem 2. (15 points) Evaluate $\quad \int(\ln x) x^{2} d x$

Problem 3. (20 points) Use a trigonometric substitution to evaluate $\int_{0}^{1} \frac{d x}{\left(4+x^{3}\right)^{3 / 3}}$ (Be careful evaluating the limits)

Problem 4. a. (10 points) Find an integral formula for the arc length of the curve

$$
y=2 \sqrt{x+1} \text { for } 0 \leq x \leq 1 . \text { Do not evaluate. }
$$

b. (10 points) Find an integral formula for the surface area of the curve in part (a) rotated around the x-axis. Simplify the integrand and evaluate the integral.

Problem 5. a. (7 points) Sketch the spiral $r=\theta^{2}{ }_{1} 0 \leq \theta \leq 3 \Pi$. Say how many times the curve meets the x-axis counting $\theta=0$ as the first times, and mark those points with $\mathrm{X}-\mathrm{s}$. (Your sketch need not be accurate to scale.)
b. (8 points) On your picture, shade in the region $0 \leq r \leq \theta^{2}$, $0 \leq \theta \leq 2 \Pi$, and find its area.

Problem 6. a. (10 points) Find the equation in polar coordinates for the line $y=x-1$ in the form $r=\int(\theta)$
b. (5 points) Find the range of θ for the portion of line $y=x-1$ in the range $0 \leq x \leq \infty$. (It helps to draw a picture.)

