MIT OpenCourseWare
http://ocw.mit.edu

18.01 Single Variable Calculus

Fall 2006

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.01 Practice Questions for Exam 1

Solutions will be posted on the 18.01 website.

No books, notes, or calculators will be allowed at the exam.

1. Evaluate each of the following, simplifying where possible; for (b) indicate reasoning. The letters a and k represent constants.
a) $\left.\frac{d}{d t}\left(\frac{3 t}{\ln t}\right)\right|_{e^{2}}$
b) $\lim _{u \rightarrow 0} \frac{3 u}{\tan 2 u}$
c) $\frac{d^{3}}{d x^{3}} \sin k x$
d) $\frac{d}{d \theta} \sqrt[3]{a+k \sin ^{2} \theta}$
2. Derive the formula for $\frac{d}{d x} x^{3}$ at the point $x=x_{0}$ directly from the definition of derivative.
3. Find $\lim _{h \rightarrow 0} \frac{1-\sqrt[3]{1+h}}{h}$ by relating it to a derivative. (Indicate reasoning.)
4. Sketch the curve $y=\sin ^{-1} x,-1 \leq x \leq 1$, and derive the formula for its derivative from that for the derivative of $\sin x$.
5. For the function

$$
f(x)=\left\{\begin{array}{ll}
a x+b, & x>0 \\
1-x+x^{2}, & x \leq 0,
\end{array} \quad a \text { and } b\right. \text { constants, }
$$

a) find all values of a and b for which the function will be continuous;
b) find all values of a and b for which the function will be differentiable.
6. For the curve given by the equation

$$
x^{2} y+y^{3}+x^{2}=8
$$

find all points on the curve where its tangent line is horizontal.
7. Where does the tangent line to the graph of $y=f(x)$ at the point $\left(x_{0}, y_{0}\right)$ intersect the x-axis?
8. The volume of a spherical balloon is decreasing at the instantaneous rate of $-10 \mathrm{~cm}^{3} / \mathrm{sec}$, at the moment when its radius is 20 cm . At that moment, how rapidly is its radius decreasing?
9. Where are the following functions discontinuous?
a) $\sec x$
b) $\frac{1+x^{2}}{1-x^{2}}$
c) $\frac{d}{d x}|x|$
10. A radioactive substance decays according to a law $A=A_{0} e^{-r t}$, where $A(t)$ is the amount in present at time t, and r is a positive constant.
a) Derive an expression in terms of r for the time it takes for the amount to fall to one-quarter of the initial amount A_{0}.
b) At the moment when the amount has fallen to $1 / 4$ the initial amount, how rapidly is the amount falling? (Units: grams, seconds.)

