MIT OpenCourseWare
http://ocw.mit.edu

18.01 Single Variable Calculus

Fall 2006

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.01 Practice Questions for Exam 3 - Fall 2006

1. Evaluate

a) $\int_{0}^{1} \frac{x d x}{\sqrt{1+3 x^{2}}}$

b) $\int_{\pi / 3}^{\pi / 2} \cos ^{3} x \sin 2 x d x$
2. Evaluate $\int_{0}^{1} x d x$ directly from its definition as the limit of a sum.

Use upper sums (circumscribed rectangles). You can use the formula $\sum_{1}^{n} i=\frac{1}{2} n(n+1)$.
3. A bank gives interest at the rate r, compounded continuously, so that an amount A_{0} deposited grows after t years to an amount $A(t)=A_{0} e^{r t}$.

You make a daily deposit at the constant annual rate k; in other words, over the time period Δt you deposit $k \Delta t$ dollars. Set up a definite integral (give reasoning) which tells how much is in your account at the end of one year. (Do not evaluate the integral.)
4. Consider the function defined by $F(x)=\int_{0}^{x} \sqrt{3+\sin t} d t$. Without attempting to find an explicit formula for $F(x)$,
a) (5) show that $F(1) \leq 2$;
b) (5) determine whether $F(x)$ is convex ("concave up") or concave ("concave down") on the interval $0<x<1$; show work or give reasoning;
c) (10) give in terms of values of $F(x)$ the value of $\int_{1}^{2} \sqrt{3+\sin 2 t} d t$.
5. If $\int_{0}^{x} f(t) d t=e^{2 x} \cos x+c$, find the value of the constant c and the function $f(t)$.
6. A glass vase has the shape of the solid obtained by rotating about the y-axis the area in the first quadrant lying over the x-interval $[0, a]$ and under the graph of $y=\sqrt{x}$. By slicing it horizontally, determine how much glass it contains.
7. A right circular cone has height 5 and base radius 1 ; it is over-filled with ice cream, in the usual way. Place the cone so its vertex is at the origin, and its axis lies along the positive y-axis, and take the cross-section containing the x-axis. The top of this cross-section is a piece of the parabola $y=6-x^{2}$. (The whole filled ice-cream cone is gotten by rotating this cross-section about the y-axis.)

What is the volume of the ice cream? (Suggestion: use cylindrical shells.)
8. Rectangles are inscribed as shown in the quarter-circle of radius a, with the point x being chosen randomly on the interval $[0, a]$. Find the average value of their area.
9. Find the approximate value given for the integral below by the trapezoidal rule and also by Simpson's rule, taking $n=2$ (i.e., dividing the interval of integration into two equal subintervals):

$$
\int_{0}^{\pi / 2} \sin ^{6} x d x
$$

Other possible problems: Volumes by vertical slicing 4B, Work problems (P.Set 5)

