MIT OpenCourseWare
http://ocw.mit.edu

18.01 Single Variable Calculus

Fall 2006

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 16: Differential Equations and Separation of Variables

Ordinary Differential Equations (ODEs)

Example 1. $\frac{d y}{d x}=f(x)$
Solution: $y=\int f(x) d x$. We consider these types of equations as solved.

Example 2. $\left(\frac{d}{d x}+x\right) y=0 \quad\left(\right.$ or $\left.\quad \frac{d y}{d x}+x y=0\right)$
$\left(\left(\frac{d}{d x}+x\right)\right.$ is known in quantum mechanics as the annihilation operator.)
Besides integration, we have only one method of solving this so far, namely, substitution. Solving for $\frac{d y}{d x}$ gives:

$$
\frac{d y}{d x}=-x y
$$

The key step is to separate variables.

$$
\frac{d y}{y}=-x d x
$$

Note that all y-dependence is on the left and all x-dependence is on the right.

Next, take the antiderivative of both sides:

$$
\begin{aligned}
\int \frac{d y}{y} & =-\int x d x \\
\ln |y| & =-\frac{x^{2}}{2}+c \quad(\text { only need one constant } c) \\
|y| & =e^{c} e^{-x^{2} / 2} \quad(\text { exponentiate }) \\
y & =a e^{-x^{2} / 2} \quad\left(a= \pm e^{c}\right)
\end{aligned}
$$

Despite the fact that $e^{c} \neq 0, a=0$ is possible along with all $a \neq 0$, depending on the initial conditions. For instance, if $y(0)=1$, then $y=e^{-x^{2} / 2}$. If $y(0)=a$, then $y=a e^{-x^{2} / 2}$ (See Fig. 11).

Figure 1: Graph of $y=e^{-\frac{x^{2}}{2}}$.

In general:

$$
\begin{aligned}
\frac{d y}{d x} & =f(x) g(y) \\
\frac{d y}{g(y)} & =f(x) d x \quad \text { which we can write as } \\
h(y) d y & =f(x) d x \text { where } h(y)=\frac{1}{g(y)} .
\end{aligned}
$$

Now, we get an implicit formula for y :

$$
H(y)=F(x)+c \quad\left(H(y)=\int h(y) d y ; \quad F(x)=\int f(x) d x\right)
$$

where $H^{\prime}=h, F^{\prime}=f$, and

$$
y=H^{-1}(F(x)+c)
$$

(H^{-1} is the inverse function.)
In the previous example:

$$
\begin{aligned}
& f(x)=x ; \quad F(x)=\frac{-x^{2}}{2} \\
& g(y)=y ; \quad h(y)=\frac{1}{g(y)}=\frac{1}{y}, \quad H(y)=\ln |y|
\end{aligned}
$$

Example 3 (Geometric Example). $\frac{d y}{d x}=2\left(\frac{y}{x}\right)$.
Find a graph such that the slope of the tangent line is twice the slope of the ray from $(0,0)$ to (x, y) seen in Fig. 2.

Figure 2: The slope of the tangent line (red) is twice the slope of the ray from the origin to the point (x, y).

$$
\begin{aligned}
\frac{d y}{y} & =\frac{2 d x}{x} \quad \text { (separate variables) } \\
\ln |y| & =2 \ln |x|+c \quad \text { (antiderivative) } \\
|y| & \left.=e^{c} x^{2} \quad \text { (exponentiate; remember, } e^{2 \ln |x|}=x^{2}\right)
\end{aligned}
$$

Thus,

$$
y=a x^{2}
$$

Again, $a<0, a>0$ and $a=0$ are all acceptable. Possible solutions include, for example,

$$
\begin{aligned}
& y=x^{2} \quad(a=1) \\
& y=2 x^{2} \quad(a=2) \\
& y=-x^{2} \quad(a=-1) \\
& y=0 x^{2}=0 \quad(a=0) \\
& y=-2 y^{2} \quad(a=-2) \\
& y=100 x^{2} \quad(a=100)
\end{aligned}
$$

Example 4. Find the curves that are perpendicular to the parabolas in Example 3.
We know that their slopes,

$$
\frac{d y}{d x}=\frac{-1}{\text { slope of parabola }}=\frac{-x}{2 y}
$$

Separate variables:

$$
y d y=\frac{-x}{2} d x
$$

Take the antiderivative:

$$
\frac{y^{2}}{2}=-\frac{x^{2}}{4}+c \quad \Longrightarrow \quad \frac{x^{2}}{4}+\frac{y^{2}}{2}=c
$$

which is an equation for a family of ellipses. For these ellipses, the ratio of the x-semi-major axis to the y -semi-minor axis is $\sqrt{2}$ (see Fig. 3).

Figure 3: The ellipses are perpendicular to the parabolas.
Separation of variables leads to implicit formulas for y, but in this case you can solve for y.

$$
y= \pm \sqrt{2\left(c-\frac{x^{2}}{4}\right)}
$$

Exam Review

Exam 2 will be harder than exam 1 - be warned! Here's a list of topics that exam 2 will cover:

1. Linear and/or quadratic approximations
2. Sketches of $y=f(x)$
3. Maximum/minimum problems.
4. Related rates.
5. Antiderivatives. Separation of variables.
6. Mean value theorem.

More detailed notes on all of these topics are provided in the Exam 2 review sheet.

