MIT OpenCourseWare
http://ocw.mit.edu

18.01 Single Variable Calculus

Fall 2006

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 19: First Fundamental Theorem of

Fundamental Theorem of Calculus (FTC 1)

$$
\begin{aligned}
& \text { If } f(x) \text { is continuous and } F^{\prime}(x)=f(x) \text {, then } \\
& \qquad \int_{a}^{b} f(x) d x=F(b)-F(a)
\end{aligned}
$$

Notation: $\left.F(x)\right|_{a} ^{b}=\left.F(x)\right|_{x=a} ^{x=b}=F(b)-F(a)$
Example 1. $F(x)=\frac{x^{3}}{3}, \quad F^{\prime}(x)=x^{2} ; \quad \int_{a}^{b} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{a} ^{b}=\frac{b^{3}}{3}-\frac{a^{3}}{3}$

Example 2. Area under one hump of $\sin x$ (See Figure 1.)

$$
\int_{0}^{\pi} \sin x d x=-\left.\cos x\right|_{0} ^{\pi}=-\cos \pi-(-\cos 0)=-(-1)-(-1)=2
$$

Figure 1: Graph of $f(x)=\sin x$ for $0 \leq x \leq \pi$.

Example 3. $\int_{0}^{1} x^{5} d x=\left.\frac{x^{6}}{6}\right|_{0} ^{1}=\frac{1}{6}-0=\frac{1}{6}$

Intuitive Interpretation of FTC:

$x(t)$ is a position; $\quad v(t)=x^{\prime}(t)=\frac{d x}{d t}$ is the speed or rate of change of x.

$$
\int_{a}^{b} v(t) d t=x(b)-x(a) \quad(\text { FTC } 1)
$$

R.H.S. is how far $x(t)$ went from time $t=a$ to time $t=b$ (difference between two odometer readings).
L.H.S. represents speedometer readings.

$$
\sum_{i=1}^{n} v\left(t_{i}\right) \Delta t \quad \text { approximates the sum of distances traveled over times } \Delta t
$$

The approximation above is accurate if $v(t)$ is close to $v\left(t_{i}\right)$ on the $i^{t h}$ interval. The interpretation of $x(t)$ as an odometer reading is no longer valid if v changes sign. Imagine a round trip so that $x(b)-x(a)=0$. Then the positive and negative velocities $v(t)$ cancel each other, whereas an odometer would measure the total distance not the net distance traveled.

Example 4. $\int_{0}^{2 \pi} \sin x d x=-\left.\cos x\right|_{0} ^{2 \pi}=-\cos 2 \pi-(-\cos 0)=0$.
The integral represents the sum of areas under the curve, above the x-axis minus the areas below the x-axis. (See Figure 2.)

Figure 2: Graph of $f(x)=\sin x$ for $0 \leq x \leq 2 \pi$.

Integrals have an important additive property (See Figure 3.)

$$
\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x
$$

Figure 3: Illustration of the additive property of integrals
New Definition:

$$
\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x
$$

This definition is used so that the fundamental theorem is valid no matter if $a<b$ or $b<a$. It also makes it so that the additive property works for a, b, c in any order, not just the one pictured in Figure 3

Estimation:

If $f(x) \leq g(x)$, then $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x($ only if $a<b)$
Example 5. Estimation of e^{x}
Since $1 \leq e^{x}$ for $x \geq 0$,

$$
\begin{gathered}
\int_{0}^{1} 1 d x \leq \int_{0}^{1} e^{x} d x \\
\int_{0}^{1} e^{x} d x=\left.e^{x}\right|_{0} ^{1}=e^{1}-e^{0}=e-1
\end{gathered}
$$

Thus $1 \leq e-1$, or $e \geq 2$.

Example 6. We showed earlier that $1+x \leq e^{x}$. It follows that

$$
\begin{aligned}
& \int_{0}^{1}(1+x) d x \leq \int_{0}^{1} e^{x} d x=e-1 \\
& \int_{0}^{1}(1+x) d x=\left.\left(x+\frac{x^{2}}{2}\right)\right|_{0} ^{1}=\frac{3}{2}
\end{aligned}
$$

Hence, $\frac{3}{2} \leq e-1$,or, $e \geq \frac{5}{2}$.

Change of Variable:

If $f(x)=g(u(x))$, then we write $d u=u^{\prime}(x) d x$ and

$$
\int g(u) d u=\int g(u(x)) u^{\prime}(x) d x=\int f(x) u^{\prime}(x) d x \quad \text { (indefinite integrals) }
$$

For definite integrals:

$$
\int_{x_{1}}^{x_{2}} f(x) u^{\prime}(x) d x=\int_{u_{1}}^{u_{2}} g(u) d u \quad \text { where } u_{1}=u\left(x_{1}\right), u_{2}=u\left(x_{2}\right)
$$

Example 7. $\int_{1}^{2}\left(x^{3}+2\right)^{4} x^{2} d x$
Let $u=x^{3}+2$. Then $d u=3 x^{2} d x \Longrightarrow x^{2} d x=\frac{d u}{3}$; $x_{1}=1, x_{2}=2 \Longrightarrow u_{1}=1^{3}+2=3, u_{2}=2^{3}+2=10$, and
$\int_{1}^{2}\left(x^{3}+2\right)^{4} x^{2} d x=\int_{3}^{10} u^{4} \frac{d u}{3}=\left.\frac{u^{5}}{15}\right|_{3} ^{10}=\frac{10^{5}-3^{5}}{15}$

