MIT OpenCourseWare
http://ocw.mit.edu

18.01 Single Variable Calculus

Fall 2006

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 20: Second Fundamental Theorem

Recall: First Fundamental Theorem of Calculus (FTC 1)

$$
\begin{aligned}
& \text { If } f \text { is continuous and } F^{\prime}=f \text {, then } \\
& \qquad \int_{a}^{b} f(x) d x=F(b)-F(a)
\end{aligned}
$$

We can also write that as

$$
\int_{a}^{b} f(x) d x=\left.\int f(x) d x\right|_{x=a} ^{x=b}
$$

Do all continuous functions have antiderivatives? Yes. However...
What about a function like this?

$$
\int e^{-x^{2}} d x=? ?
$$

Yes, this antiderivative exists. No, it's not a function we've met before: it's a new function.
The new function is defined as an integral:

$$
F(x)=\int_{0}^{x} e^{-t^{2}} d t
$$

It will have the property that $F^{\prime}(x)=e^{-x^{2}}$.
Other new functions include antiderivatives of $e^{-x^{2}}, x^{1 / 2} e^{-x^{2}}, \frac{\sin x}{x}, \sin \left(x^{2}\right), \cos \left(x^{2}\right), \ldots$

Second Fundamental Theorem of Calculus (FTC 2)

$$
\begin{gathered}
\text { If } F(x)=\int_{a}^{x} f(t) d t \text { and } f \text { is continuous, then } \\
F^{\prime}(x)=f(x)
\end{gathered}
$$

Geometric Proof of FTC 2: Use the area interpretation: $F(x)$ equals the area under the curve between a and x.

$$
\begin{aligned}
\Delta F & =F(x+\Delta x)-F(x) \\
\Delta F & \approx(\text { base })(\text { height }) \approx(\Delta x) f(x) \quad \text { (See Figure 1) } \\
\frac{\Delta F}{\Delta x} & \approx f(x) \\
\text { Hence } \lim _{\Delta x \rightarrow 0} \frac{\Delta F}{\Delta x} & =f(x)
\end{aligned}
$$

But, by the definition of the derivative:

$$
\lim _{\Delta x \rightarrow 0} \frac{\Delta F}{\Delta x}=F^{\prime}(x)
$$

Figure 1: Geometric Proof of FTC 2.

Therefore,

$$
F^{\prime}(x)=f(x)
$$

Another way to prove FTC 2 is as follows:

$$
\begin{aligned}
\frac{\Delta F}{\Delta x} & =\frac{1}{\Delta x}\left[\int_{a}^{x+\Delta x} f(t) d t-\int_{a}^{x} f(t) d t\right] \\
& =\frac{1}{\Delta x} \int_{x}^{x+\Delta x} f(t) d t \quad \text { (which is the "average value" of } f \text { on the interval } x \leq t \leq x+\Delta x . \text {) }
\end{aligned}
$$

As the length Δx of the interval tends to 0 , this average tends to $f(x)$.

Proof of FTC 1 (using FTC 2)

Start with $F^{\prime}=f$ (we assume that f is continuous). Next, define $G(x)=\int_{a}^{x} f(t) d t$. By FTC2, $G^{\prime}(x)=f(x)$. Therefore, $(F-G)^{\prime}=F^{\prime}-G^{\prime}=f-f=0$. Thus, $F-G=$ constant. (Recall we used the Mean Value Theorem to show this).
Hence, $F(x)=G(x)+c$. Finally since $G(a)=0$,

$$
\int_{a}^{b} f(t) d t=G(b)=G(b)-G(a)=[F(b)-c]-[F(a)-c]=F(b)-F(a)
$$

which is FTC 1.
Remark. In the preceding proof G was a definite integral and F could be any antiderivative. Let us illustrate with the example $f(x)=\sin x$. Taking $a=0$ in the proof of FTC 1 ,

$$
G(x)=\int_{0}^{x} \cos t d t=\left.\sin t\right|_{0} ^{x}=\sin x \quad \text { and } G(0)=0
$$

If, for example, $F(x)=\sin x+21$. Then $F^{\prime}(x)=\cos x$ and

$$
\int_{a}^{b} \sin x d x=F(b)-F(a)=(\sin b+21)-(\sin a+21)=\sin b-\sin a
$$

Every function of the form $F(x)=G(x)+c$ works in FTC 1.

Examples of "new" functions

The error function, which is often used in statistics and probability, is defined as

$$
\begin{aligned}
\operatorname{erf}(x) & =\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t \\
\text { and } \lim _{x \rightarrow \infty} \operatorname{erf}(x) & =1 \quad \text { (See Figure 2) }
\end{aligned}
$$

Figure 2: Graph of the error function.
Another "new" function of this type, called the logarithmic integral, is defined as

$$
\operatorname{Li}(x)=\int_{2}^{x} \frac{d t}{\ln t}
$$

This function gives the approximate number of prime numbers less than x. A common encryption technique involves encoding sensitive information like your bank account number so that it can be sent over an insecure communication channel. The message can only be decoded using a secret prime number. To know how safe the secret is, a cryptographer needs to know roughly how many 200-digit primes there are. You can find out by estimating the following integral:

$$
\int_{10^{200}}^{10^{201}} \frac{d t}{\ln t}
$$

We know that

$$
\ln 10^{200}=200 \ln (10) \approx 200(2.3)=460 \quad \text { and } \quad \ln 10^{201}=201 \ln (10) \approx 462
$$

We will approximate to one significant figure: $\ln t \approx 500$ for $200 \leq t \leq 10^{201}$.
With all of that in mind, the number of 200-digit primes is roughly ${ }^{1}$

$$
\int_{10^{200}}^{10^{201}} \frac{d t}{\ln t} \approx \int_{10^{200}}^{10^{201}} \frac{d t}{500}=\frac{1}{500}\left(10^{201}-10^{200}\right) \approx \frac{9 \cdot 10^{200}}{500} \approx 10^{198}
$$

There are LOTS of 200-digit primes. The odds of some hacker finding the 200-digit prime required to break into your bank account number are very very slim.

Another set of "new" functions are the Fresnel functions, which arise in optics:

$$
\begin{aligned}
C(x) & =\int_{0}^{x} \cos \left(t^{2}\right) d t \\
S(x) & =\int_{0}^{x} \sin \left(t^{2}\right) d t
\end{aligned}
$$

Bessel functions often arise in problems with circular symmetry:

$$
J_{0}(x)=\frac{1}{2 \pi} \int_{0}^{\pi} \cos (x \sin \theta) d \theta
$$

On the homework, you are asked to find $C^{\prime}(x)$. That's easy!

$$
C^{\prime}(x)=\cos \left(x^{2}\right)
$$

We will use FTC 2 to discuss the function $L(x)=\int_{1}^{x} \frac{d t}{t}$ from first principles next lecture.

[^0]
[^0]: ${ }^{1}$ The middle equality in this approximation is a very basic and useful fact

 $$
 \int_{a}^{b} c d x=c(b-a)
 $$

 Think of this as finding the area of a rectangle with base $(b-a)$ and height c. In the computation above, $a=$ $10^{200}, b=10^{201}, c=\frac{1}{500}$

