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Lecture 20 18.01 Fall 2006 

Lecture 20: Second Fundamental Theorem 

Recall: First Fundamental Theorem of Calculus (FTC 1) 

If f is continuous and F � = f , then � b 

f(x)dx = F (b) − F (a) 
a 

We can also write that as � b x=b 
f(x)dx = f(x)dx 

x=aa 

Do all continuous functions have antiderivatives? Yes. However... 
What about a function like this?

2 

e−x dx =?? 

Yes, this antiderivative exists. No, it’s not a function we’ve met before: it’s a new function. 

The new function is defined as an integral: 
x 

2 

F (x) = e−t dt 
0 

2
It will have the property that F �(x) = e−x . 

sin x1/2Other new functions include antiderivatives of e−x 2 

, x e−x 2 

, , sin(x 2), cos(x 2), . . . 
x 

Second Fundamental Theorem of Calculus (FTC 2) 

x 

If F (x) = f(t)dt and f is continuous, then 
a 

F �(x) = f(x) 

Geometric Proof of FTC 2: Use the area interpretation: F (x) equals the area under the curve 
between a and x. 

ΔF = F (x + Δx) − F (x)

ΔF ≈ (base)(height) ≈ (Δx)f(x) (See Figure 1.)

ΔF

Δx 

≈ f(x)


ΔF

Hence lim = f(x)

Δx 0 Δx→

But, by the definition of the derivative: 

ΔF
lim = F �(x)

Δx 0 Δx→

1 
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Figure 1: Geometric Proof of FTC 2. 

Therefore, 
F �(x) = f(x) 

Another way to prove FTC 2 is as follows: 

ΔF 1 x+Δx x 

Δx 
=

Δx
f(t)dt − f(t)dt 

a a 

1 
� x+Δx 

=
Δx

f(t)dt (which is the “average value” of f on the interval x ≤ t ≤ x + Δx.) 
x 

As the length Δx of the interval tends to 0, this average tends to f(x). 

Proof of FTC 1 (using FTC 2) 

x 

Start with F � = f (we assume that f is continuous). Next, define G(x) = f(t)dt. By FTC2, 
a 

G�(x) = f(x). Therefore, (F − G)� = F � − G� = f − f = 0. Thus, F − G = constant. (Recall we 
used the Mean Value Theorem to show this). 

Hence, F (x) = G(x) + c. Finally since G(a) = 0, � b 

f(t)dt = G(b) = G(b) − G(a) = [F (b) − c] − [F (a) − c] = F (b) − F (a) 
a 

which is FTC 1. 

Remark. In the preceding proof G was a definite integral and F could be any antiderivative. Let 
us illustrate with the example f(x) = sin x. Taking a = 0 in the proof of FTC 1, � x �x 

G(x) = cos t dt = sin t�� = sin x and G(0) = 0. 
0 0 
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If, for example, F (x) = sin x + 21. Then F �(x) = cos x and � b 

sin x dx = F (b) − F (a) = (sin b + 21) − (sin a + 21) = sin b − sin a 
a 

Every function of the form F (x) = G(x) + c works in FTC 1. 

Examples of “new” functions 

The error function, which is often used in statistics and probability, is defined as 

22 x 

erf(x) = e−t dt√
π 0 

and lim erf(x) = 1 (See Figure 2) 
x→∞ 

Figure 2: Graph of the error function. 

Another “new” function of this type, called the logarithmic integral, is defined as 
x dt

Li(x) = 
ln t2 

This function gives the approximate number of prime numbers less than x. A common encryption 
technique involves encoding sensitive information like your bank account number so that it can be 
sent over an insecure communication channel. The message can only be decoded using a secret 
prime number. To know how safe the secret is, a cryptographer needs to know roughly how many 
200-digit primes there are. You can find out by estimating the following integral: � 10201 

dt 

10200 ln t 

We know that 

ln 10200 = 200 ln(10) ≈ 200(2.3) = 460 and ln 10201 = 201 ln(10) ≈ 462 
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We will approximate to one significant figure: ln t ≈ 500 for 200 ≤ t ≤ 10201 . 

With all of that in mind, the number of 200-digit primes is roughly 1 

� 10201 � 10201 

10200dt dt 1 � � 9 · 
10200 ln t 

≈ 
10200 500

=
500 

10201 − 10200 ≈ 
500 

≈ 10198 

There are LOTS of 200-digit primes. The odds of some hacker finding the 200-digit prime required 
to break into your bank account number are very very slim. 

Another set of “new” functions are the Fresnel functions, which arise in optics: 

x 

C(x) = cos(t2)dt �0 
x 

S(x) = sin(t2)dt 
0 

Bessel functions often arise in problems with circular symmetry: � π1 
J0(x) = cos(x sin θ)dθ

2π 0 

On the homework, you are asked to find C �(x). That’s easy! 

C �(x) = cos(x 2) 

x dt
We will use FTC 2 to discuss the function L(x) = from first principles next lecture. 

t1 

1 The middle equality in this approximation is a very basic and useful fact � b 

c dx = c(b − a) 
a 

Think of this as finding the area of a rectangle with base (b − a) and height c. In the computation above, a = 
110200, b = 10201, c = 

500 
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