MIT OpenCourseWare
http://ocw.mit.edu

18.01 Single Variable Calculus

Fall 2006

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 23: Work, Average Value, Probability

Application of Integration to Average Value

You already know how to take the average of a set of discrete numbers:

$$
\frac{a_{1}+a_{2}}{2} \text { or } \frac{a_{1}+a_{2}+a_{3}}{3}
$$

Now, we want to find the average of a continuum.

Figure 1: Discrete approximation to $y=f(x)$ on $a \leq x \leq b$.

$$
\text { Average } \approx \frac{y_{1}+y_{2}+\ldots+y_{n}}{n}
$$

where

$$
\begin{gathered}
a=x_{0}<x_{1}<\cdots x_{n}=b \\
y_{0}=f\left(x_{0}\right), y_{1}=f\left(x_{1}\right), \ldots y_{n}=f\left(x_{n}\right)
\end{gathered}
$$

and

$$
n(\Delta x)=b-a \quad \Longleftrightarrow \quad \Delta x=\frac{b-a}{n}
$$

and
The limit of the Riemann Sums is

$$
\lim _{n \rightarrow \infty}\left(y_{1}+\cdots+y_{n}\right) \frac{b-a}{n}=\int_{a}^{b} f(x) d x
$$

Divide by $b-a$ to get the continuous average

$$
\lim _{n \rightarrow \infty} \frac{y_{1}+\cdots+y_{n}}{n}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Figure 2: Average height of the semicircle.

Example 1. Find the average of $y=\sqrt{1-x^{2}}$ on the interval $-1 \leq x \leq 1$. (See Figure 2)

$$
\text { Average height }=\frac{1}{2} \int_{-1}^{1} \sqrt{1-x^{2}} d x=\frac{1}{2}\left(\frac{\pi}{2}\right)=\frac{\pi}{4}
$$

Example 2. The average of a constant is the same constant

$$
\frac{1}{b-a} \int_{a}^{b} 53 d x=53
$$

Example 3. Find the average height y on a semicircle, with respect to arclength. (Use $d \theta$ not $d x$. See Figure 3)

Figure 3: Different weighted averages.

$$
\text { Average }=\frac{1}{\pi} \int_{0}^{y}=\sin \theta . \begin{aligned}
& \pi \\
& \sin \theta d \theta=\left.\frac{1}{\pi}(-\cos \theta)\right|_{0} ^{\pi}
\end{aligned}=\frac{1}{\pi}(-\cos \pi-(-\cos 0))=\frac{2}{\pi}
$$

Example 4. Find the average temperature of water in the witches cauldron from last lecture. (See Figure 4.

Figure 4: $y=x^{2}$, rotated about the y-axis.

First, recall how to find the volume of the solid of revolution by disks.

$$
V=\int_{0}^{1}\left(\pi x^{2}\right) d y=\int_{0}^{1} \pi y d y=\left.\frac{\pi y^{2}}{2}\right|_{0} ^{1}=\frac{\pi}{2}
$$

Recall that $T(y)=100-30 y$ and $\left(T(0)=100^{\circ} ; T(1)=70^{\circ}\right)$. The average temperature per unit volume is computed by giving an importance or "weighting" $w(y)=\pi y$ to the disk at height y.

$$
\frac{\int_{0}^{1} T(y) w(y) d y}{\int_{0}^{1} w(y) d y}
$$

The numerator is

$$
\int_{0}^{1} T \pi y d y=\pi \int_{0}^{1}(100-30 y) y d y=\left.\pi\left(500 y^{2}-10 y^{3}\right)\right|_{0} ^{1}=40 \pi
$$

Thus the average temperature is:

$$
\frac{40 \pi}{\pi / 2}=80^{\circ} C
$$

Compare this with the average taken with respect to height y :

$$
\frac{1}{1} \int_{0}^{1} T d y=\int_{0}^{1}(100-30 y) d y=\left.\left(100 y-15 y^{2}\right)\right|_{0} ^{1}=85^{\circ} C
$$

T is linear. Largest $T=100^{\circ} C$, smallest $T=70^{\circ} C$, and the average of the two is

$$
\frac{70+100}{2}=85
$$

The answer 85° is consistent with the ordinary average. The weighted average (integration with respect to $\pi y d y$) is lower $\left(80^{\circ}\right)$ because there is more water at cooler temperatures in the upper parts of the cauldron.

Dart board, revisited

Last time, we said that the accuracy of your aim at a dart board follows a "normal distribution":

$$
c e^{-r^{2}}
$$

Now, let's pretend someone - say, your little brother - foolishly decides to stand close to the dart board. What is the chance that he'll get hit by a stray dart?

Figure 5: Shaded section is $2 r_{i}<r<3 r_{1}$ between 3 and 5 o'clock.

To make our calculations easier, let's approximate your brother as a sector (the shaded region in Fig. 5). Your brother doesn't quite stand in front of the dart board. Let us say he stands at a distance r from the center where $2 r_{1}<r<3 r_{1}$ and r_{1} is the radius of the dart board. Note that your brother doesn't surround the dart board. Let us say he covers the region between 3 o'clock and 5 o'clock, or $\frac{1}{6}$ of a ring.

Remember that

$$
\text { probability }=\frac{\text { part }}{\text { whole }}
$$

Figure 6: Integrating over rings.
The ring has weight $\left(c e^{-r^{2}}\right)(2 \pi r)(d r)$ (see Figure 6. The probability of a dart hitting your brother is:

$$
\frac{\frac{1}{6} \int_{2 r_{1}}^{3 r_{1}} c e^{-r^{2}} 2 \pi r d r}{\int_{0}^{\infty} c e^{-r^{2}} 2 \pi r d r}
$$

Recall that $\frac{1}{6}=\frac{5-3}{12}$ is our approximation to the portion of the circumference where the little brother stands. (Note: $e^{-r^{2}}=e^{\left(-r^{2}\right)} \operatorname{not}\left(e^{-r}\right)^{2}$)

$$
\int_{a}^{b} r e^{-r^{2}} d r=-\left.\frac{1}{2} e^{-r^{2}}\right|_{a} ^{b}=-\frac{1}{2} e^{-b^{2}}+\frac{1}{2} e^{-a^{2}} \quad\left(\frac{d}{d r} e^{-r^{2}}=-2 r e^{-r^{2}}\right)
$$

Denominator:

$$
\int_{0}^{\infty} e^{-r^{2}} r d r=-\left.\frac{1}{2} e^{-r^{2}}\right|_{0} ^{R \rightarrow \infty}=-\frac{1}{2} e^{-R^{2}}+\frac{1}{2} e^{-0^{2}}=\frac{1}{2}
$$

(Note that $e^{-R^{2}} \rightarrow 0$ as $R \rightarrow \infty$.)

Figure 7: Normal Distribution.

$$
\text { Probability }=\frac{\frac{1}{6} \int_{2 r_{1}}^{3 r_{1}} c e^{-r^{2}} 2 \pi r d r}{\int_{0}^{\infty} c e^{-r^{2}} 2 \pi r d r}=\frac{\frac{1}{6} \int_{2 r_{1}}^{3 r_{1}} e^{-r^{2}} r d r}{\int_{0}^{\infty} e^{-r^{2}} r d r}=\frac{1}{3} \int_{2 r_{1}}^{3 r_{1}} e^{-r^{2}} r d r=\left.\frac{-e^{-r^{2}}}{6}\right|_{2 r_{1}} ^{3 r_{1}}
$$

$$
\text { Probability }=\frac{-e^{-9 r_{1}^{2}}+e^{-4 r_{1}^{2}}}{6}
$$

Let's assume that the person throwing the darts hits the dartboard $0 \leq r \leq r_{1}$ about half the time. (Based on personal experience with 7 -year-olds, this is realistic.)

$$
\begin{gathered}
P\left(0 \leq r \leq r_{1}\right)=\frac{1}{2}=\int_{0}^{r_{1}} 2 e^{-r^{2}} r d r=-e^{-r_{1}^{2}}+1 \Longrightarrow e^{-r_{1}^{2}}=\frac{1}{2} \\
e^{-r_{1}^{2}}=\frac{1}{2} \\
e^{-9 r_{1}^{2}}=\left(e^{-r_{1}^{2}}\right)^{9}=\left(\frac{1}{2}\right)^{9} \approx 0 \\
e^{-4 r_{1}^{2}}=\left(e^{-r_{1}^{2}}\right)^{4}=\left(\frac{1}{2}\right)^{4}=\frac{1}{16}
\end{gathered}
$$

So, the probability that a stray dart will strike your little brother is

$$
\left(\frac{1}{16}\right)\left(\frac{1}{6}\right) \approx \frac{1}{100}
$$

In other words, there's about a 1% chance he'll get hit with each dart thrown.

Volume by Slices: An Important Example

Compute $Q=\int_{-\infty}^{\infty} e^{-x^{2}} d x$

Figure 8: $Q=$ Area under curve $e^{\left(-x^{2}\right)}$.
This is one of the most important integrals in all of calculus. It is especially important in probability and statistics. It's an improper integral, but don't let those ∞ 's scare you. In this integral, they're actually easier to work with than finite numbers would be.

To find Q, we will first find a volume of revolution, namely,

$$
V=\text { volume under } e^{-r^{2}} \quad\left(r=\sqrt{x^{2}+y^{2}}\right)
$$

We find this volume by the method of shells, which leads to the same integral as in the last problem. The shell or cylinder under $e^{-r^{2}}$ at radius r has circumference $2 \pi r$, thickness $d r$; (see Figure 9). Therefore $d V=e^{-r^{2}} 2 \pi r d r$. In the range $0 \leq r \leq R$,

$$
\int_{0}^{R} e^{-r^{2}} 2 \pi r d r=-\left.\pi e^{-r^{2}}\right|_{0} ^{R}=-\pi e^{-R^{2}}+\pi
$$

When $R \rightarrow \infty, e^{-R^{2}} \rightarrow 0$,

$$
V=\int_{0}^{\infty} e^{-r^{2}} 2 \pi r d r=\pi \quad \text { (same as in the darts problem) }
$$

Figure 9: Area of annulus or ring, $(2 \pi r) d r$.

Next, we will find V by a second method, the method of slices. Slice the solid along a plane where y is fixed. (See Figure 10). Call $A(y)$ the cross-sectional area. Since the thickness is $d y$ (see Figure 11],

$$
V=\int_{-\infty}^{\infty} A(y) d y
$$

Figure 10: Slice $A(y)$.

Figure 11: Top view of $A(y)$ slice.

To compute $A(y)$, note that it is an integral (with respect to $d x$)

$$
A(y)=\int_{-\infty}^{\infty} e^{-r^{2}} d x=\int_{-\infty}^{\infty} e^{-x^{2}-y^{2}} d x=e^{-y^{2}} \int_{-\infty}^{\infty} e^{-x^{2}} d x=e^{-y^{2}} Q
$$

Here, we have used $r^{2}=x^{2}+y^{2}$ and

$$
e^{-x^{2}-y^{2}}=e^{-x^{2}} e^{-y^{2}}
$$

and the fact that y is a constant in the $A(y)$ slice (see Figure 12 . In other words,

$$
\int_{-\infty}^{\infty} c e^{-x^{2}} d x=c \int_{-\infty}^{\infty} e^{-x^{2}} d x \quad \text { with } \quad c=e^{-y^{2}}
$$

Figure 12: Side view of $A(y)$ slice.

It follows that

$$
V=\int_{-\infty}^{\infty} A(y) d y=\int_{-\infty}^{\infty} e^{-y^{2}} Q d y=Q \int_{-\infty}^{\infty} e^{-y^{2}} d y=Q^{2}
$$

Indeed,

$$
Q=\int_{-\infty}^{\infty} e^{-x^{2}} d x=\int_{-\infty}^{\infty} e^{-y^{2}} d y
$$

because the name of the variable does not matter. To conclude the calculation read the equation backwards:

$$
\pi=V=Q^{2} \Longrightarrow Q=\sqrt{\pi}
$$

We can rewrite $Q=\sqrt{\pi}$ as

$$
\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-x^{2}} d x=1
$$

An equivalent rescaled version of this formula (replacing x with $x / \sqrt{2} \sigma$) is used:

$$
\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} e^{-x^{2} / 2 \sigma^{2}} d x=1
$$

This formula is central to probability and statistics. The probability distribution $\frac{1}{\sqrt{2 \pi} \sigma} e^{-x^{2} / 2 \sigma^{2}}$ on $-\infty<x<\infty$ is known as the normal distribution, and $\sigma>0$ is its standard deviation.

