MIT OpenCourseWare
http://ocw.mit.edu

18.01 Single Variable Calculus

Fall 2006

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 28: Integration by Inverse Substitution; Completing the Square

Trigonometric Substitutions, continued

Figure 1: Find area of shaded portion of semicircle.

$$
\begin{gathered}
\int_{0}^{x} \sqrt{a^{2}-t^{2}} d t \\
t=a \sin u ; \quad d t=a \cos u d u
\end{gathered}
$$

$$
a^{2}-t^{2}=a^{2}-a^{2} \sin ^{2} u=a^{2} \cos ^{2} u \Longrightarrow \sqrt{a^{2}-t^{2}}=a \cos u \quad \text { (No more square root!) }
$$

Start: $x=-a \Leftrightarrow u=-\pi / 2 ; \quad$ Finish: $x=a \Leftrightarrow u=\pi / 2$

$$
\begin{gathered}
\int \sqrt{a^{2}-t^{2}} d t=\int a^{2} \cos ^{2} u d u=a^{2} \int \frac{1+\cos (2 u)}{2} d u=a^{2}\left[\frac{u}{2}+\frac{\sin (2 u)}{4}\right]+c \\
\text { (Recall, } \left.\cos ^{2} u=\frac{1+\cos (2 u)}{2}\right)
\end{gathered}
$$

We want to express this in terms of x, not u. When $t=0, a \sin u=0$, and therefore $u=0$. When $t=x, a \sin u=x$, and therefore $u=\sin ^{-1}(x / a)$.

$$
\begin{gathered}
\frac{\sin (2 u)}{4}=\frac{2 \sin u \cos u}{4}=\frac{1}{2} \sin u \cos u \\
\sin u=\sin \left(\sin ^{-1}(x / a)\right)=\frac{x}{a}
\end{gathered}
$$

How can we find $\cos u=\cos \left(\sin ^{-1}(x / a)\right)$? Answer: use a right triangle (Figure 22).

Figure 2: $\sin u=x / a ; \cos u=\sqrt{a^{2}-x^{2}} / a$.

From the diagram, we see

$$
\cos u=\frac{\sqrt{a^{2}-x^{2}}}{a}
$$

And finally,

$$
\begin{aligned}
\int_{0}^{x} \sqrt{a^{2}-t^{2}} d t= & a^{2}\left[\frac{u}{4}+\frac{1}{2} \sin u \cos u\right]-0=a^{2}\left[\frac{\sin ^{-1}(x / a)}{2}+\frac{1}{2}\left(\frac{x}{a}\right) \frac{\sqrt{a^{2}-x^{2}}}{a}\right] \\
& \int_{0}^{x} \sqrt{a^{2}-t^{2}} d t=\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)+\frac{1}{2} x \sqrt{a^{2}-x^{2}}
\end{aligned}
$$

When the answer is this complicated, the route to getting there has to be rather complicated. There's no way to avoid the complexity.

Let's double-check this answer. The area of the upper shaded sector in Figure 3 is $\frac{1}{2} a^{2} u$. The area of the lower shaded region, which is a triangle of height $\sqrt{a^{2}-x^{2}}$ and base x, is $\frac{1}{2} x \sqrt{a^{2}-x^{2}}$.

Figure 3: Area divided into a sector and a triangle.

Here is a list of integrals that can be computed using a trig substitution and a trig identity.

$$
\begin{array}{lll}
\text { integral } & \text { substitution } & \text { trig identity } \\
\int \frac{d x}{\sqrt{x^{2}+1}} & x=\tan u & \tan ^{2} u+1=\sec ^{2} u \\
\int \frac{d x}{\sqrt{x^{2}-1}} & x=\sec u & \sec ^{2} u-1=\tan ^{2} u \\
\int \frac{d x}{\sqrt{1-x^{2}}} & x=\sin u & 1-\sin ^{2} u=\cos ^{2} u
\end{array}
$$

Let's extend this further. How can we evaluate an integral like this?

$$
\int \frac{d x}{\sqrt{x^{2}+4 x}}
$$

When you have a linear and a quadratic term under the square root, complete the square.

$$
x^{2}+4 x=(\text { something })^{2} \pm \text { constant }
$$

In this case,

$$
(x+2)^{2}=x^{2}+4 x+4 \Longrightarrow x^{2}+4 x=(x+2)^{2}-4
$$

Now, we make a substitution.

$$
v=x+2 \quad \text { and } \quad d v=d x
$$

Plugging these in gives us

$$
\int \frac{d x}{\sqrt{(x+2)^{2}-4}}=\int \frac{d v}{\sqrt{v^{2}-4}}
$$

Now, let

$$
\begin{gathered}
v=2 \sec u \quad \text { and } \quad d v=2 \sec u \tan u \\
\int \frac{d v}{\sqrt{v^{2}-4}}=\int \frac{2 \sec u \tan u d u}{2 \tan u}=\int \sec u d u
\end{gathered}
$$

Remember that

$$
\int \sec u d u=\ln (\sec u+\tan u)+c
$$

Finally, rewrite everything in terms of x .

$$
v=2 \sec u \Leftrightarrow \cos u=\frac{2}{v}
$$

Set up a right triangle as in Figure 4. Express $\tan u$ in terms of v.

Figure 4: $\sec u=v / 2 \quad$ or $\quad \cos u=2 / v$.
Just from looking at the triangle, we can read off

$$
\begin{aligned}
& \sec u=\frac{v}{2} \quad \text { and } \quad \tan u=\frac{\sqrt{v^{2}-4}}{2} \\
& \begin{aligned}
\int 2 \sec u d u & =\ln \left(\frac{v}{2}+\frac{\sqrt{v^{2}-4}}{2}\right)+c \\
& =\ln \left(v+\sqrt{v^{2}-4}\right)-\ln 2+c
\end{aligned}
\end{aligned}
$$

We can combine those last two terms into another constant, \tilde{c}.

$$
\int \frac{d x}{\sqrt{x^{2}+4 x}}=\ln \left(x+2+\sqrt{x^{2}+4 x}\right)+\tilde{c}
$$

Here's a teaser for next time. In the next lecture, we'll integrate all rational functions. By "rational functions," we mean functions that are the ratios of polynomials:

$$
\frac{P(x)}{Q(x)}
$$

It's easy to evaluate an expression like this:

$$
\int\left(\frac{1}{x-1}+\frac{3}{x+2}\right) d x=\ln |x-1|+3 \ln |x+2|+c
$$

If we write it a bit differently, however, it becomes much harder to integrate:

$$
\begin{gathered}
\frac{1}{x-1}+\frac{3}{x+2}=\frac{x+2+3(x-1)}{(x-1)(x+2)}=\frac{4 x-1}{x^{2}+x-2} \\
\int \frac{4 x-1}{x^{2}+x-2}=? ? ?
\end{gathered}
$$

How can we reorganize what to do starting from $(4 x-1) /\left(x^{2}+x-2\right)$? Next time, we'll see how. It involves some algebra.

