MIT OpenCourseWare
http://ocw.mit.edu

18.01 Single Variable Calculus

Fall 2006

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 29: Partial Fractions

We continue the discussion we started last lecture about integrating rational functions. We defined a rational function as the ratio of two polynomials:

$$
\frac{P(x)}{Q(x)}
$$

We looked at the example

$$
\int\left[\frac{1}{x-1}+\frac{3}{x+2}\right] d x=\ln |x-1|+3 \ln |x+2|+c
$$

That same problem can be disguised:

$$
\frac{1}{x-1}+\frac{3}{x+2}=\frac{(x+2)+3(x-1)}{(x-1)(x+2)}=\frac{4 x-1}{x^{2}+x-2}
$$

which leaves us to integrate this:

$$
\int \frac{4 x-1}{x^{2}+x-2} d x=? ? ?
$$

Goal: we want to figure out a systematic way to split $\frac{P(x)}{Q(x)}$ into simpler pieces.
First, we factor the denominator $Q(x)$.

$$
\frac{4 x-1}{x^{2}+x-2}=\frac{4 x-1}{(x-1)(x+2)}=\frac{A}{x-1}+\frac{B}{x+2}
$$

There's a slow way to find A and B. You can clear the denominator by multiplying through by $(x-1)(x+2)$:

$$
(4 x-1)=A(x+2)+B(x-1)
$$

From this, you find

$$
4=A+B \quad \text { and } \quad-1=2 A-B
$$

You can then solve these simultaneous linear equations for A and B. This approach can take a very long time if you're working with 3,4 , or more variables.

There's a faster way, which we call the "cover-up method". Multiply both sides by $(x-1)$:

$$
\frac{4 x-1}{x+2}=A+\frac{B}{x+2}(x-1)
$$

Set $x=1$ to make the B term drop out:

$$
\begin{gathered}
\frac{4-1}{1+2}=A \\
A=1
\end{gathered}
$$

The fastest way is to do this in your head or physically cover up the struck-through terms. For instance, to evaluate B :

$$
\frac{4 x-1}{(x-1)(x+2)}=\frac{A}{\not x-1}+\frac{B}{(x+2)}
$$

Implicitly, we are multiplying by $(x+2)$ and setting $x=-2$. This gives us

$$
\frac{4(-2)-1}{-2-1}=B \quad \Longrightarrow \quad B=3
$$

What we've described so far works when $Q(x)$ factors completely into distinct factors and the degree of P is less than the degree of Q.

If the factors of Q repeat, we use a slightly different approach. For example:

$$
\frac{x^{2}+2}{(x-1)^{2}(x+2)}=\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{x+2}
$$

Use the cover-up method on the highest degree term in $(x-1)$.

$$
\frac{x^{2}+1}{x+2}=B+[\operatorname{stuff}](x-1)^{2} \quad \Longrightarrow \quad \frac{1^{2}+2}{1+2}=B \quad \Longrightarrow \quad B=1
$$

Implicitly, we multiplied by $(x-1)^{2}$, then took the limit as $x \rightarrow 1$.
C can also be evaluated by the cover-up method. Set $x=-2$ to get

$$
{\frac{x^{2}+2^{2}}{(x-1)}}^{2}=C+[\operatorname{stuff}](x+2) \quad \Longrightarrow \quad \frac{(-2)^{2}+2}{(-2-1)^{2}}=C \quad \Longrightarrow \quad C=\frac{2}{3}
$$

This yields

$$
\frac{x^{2}+2}{(x-1)^{2}(x+2)}=\frac{A}{x-1}+\frac{1}{(x-1)^{2}}+\frac{2 / 3}{x+2}
$$

Cover-up can't be used to evaluate A. Instead, plug in an easy value of x : $x=0$.

$$
\frac{2}{(-1)^{2}(2)}=\frac{A}{-1}+1+\frac{1}{3} \Longrightarrow 1=1+\frac{1}{3}-A \Longrightarrow A=\frac{1}{3}
$$

Now we have a complete answer:

$$
\frac{x^{2}+2}{(x-1)^{2}(x+2)}=\frac{1}{3(x-1)}+\frac{1}{(x-1)^{2}}+\frac{2}{3(x+2)}
$$

Not all polynomials factor completely (without resorting to using complex numbers). For example:

$$
\frac{1}{\left(x^{2}+1\right)(x-1)}=\frac{A_{1}}{x-1}+\frac{B_{1} x+C_{1}}{x^{2}+1}
$$

We find A_{1}, as usual, by the cover-up method.

$$
\frac{1}{1^{2}+1}=A_{1} \quad \Longrightarrow \quad A_{1}=\frac{1}{2}
$$

Now, we have

$$
\frac{1}{\left(x^{2}+1\right)(x-1)}=\frac{1 / 2}{x-1}+\frac{B_{1} x+C_{1}}{x^{2}+1}
$$

Plug in $x=0$.

$$
\frac{1}{1(-1)}=-\frac{1}{2}+\frac{C_{1}}{1} \quad \Longrightarrow \quad C_{1}=-\frac{1}{2}
$$

Now, plug in any value other than $x=0,1$. For example, let's use $x=-1$.

$$
\frac{1}{2(-2)}=\frac{1 / 2}{-2}+\frac{B_{1}(-1)-1 / 2}{2} \Longrightarrow 0=-\frac{B_{1}-1 / 2}{2} \Longrightarrow B_{1}=-\frac{1}{2}
$$

Alternatively, you can multiply out to clear the denominators (not done here).
Let's try to integrate this function, now.

$$
\begin{gathered}
\int \frac{d x}{\left(x^{2}+1\right)(x-1)}=\frac{1}{2} \int \frac{d x}{x-1}-\frac{1}{2} \int \frac{x d x}{x^{2}+1}-\frac{1}{2} \int \frac{d x}{x^{2}+1} \\
=\frac{1}{2} \ln |x-1|-\frac{1}{4} \ln \left|x^{2}+1\right|-\frac{1}{2} \tan ^{-1} x+c
\end{gathered}
$$

What if we're faced with something that looks like this?

$$
\int \frac{d x}{(x-1)^{10}}
$$

This is actually quite simple to integrate:

$$
\int \frac{d x}{(x-1)^{10}}=-\frac{1}{9}(x-1)^{-9}+c
$$

What about this?

$$
\int \frac{d x}{\left(x^{2}+1\right)^{10}}
$$

Here, we would use trig substitution:

$$
x=\tan u \quad \text { and } \quad d x=\sec ^{2} u d u
$$

and the trig identity

$$
\tan ^{2} u+1=\sec ^{2} u
$$

to get

$$
\int \frac{\sec ^{2} u d u}{\left(\sec ^{2} u\right)^{10}}=\int \cos ^{18} u d u
$$

From here, we can evaluate this integral using the methods we introduced two lectures ago.

