MIT OpenCourseWare
http://ocw.mit.edu

18.01 Single Variable Calculus

Fall 2006

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 30: Integration by Parts, Reduction Formulae

Integration by Parts

Remember the product rule:

$$
(u v)^{\prime}=u^{\prime} v+u v^{\prime}
$$

We can rewrite that as

$$
u v^{\prime}=(u v)^{\prime}-u^{\prime} v
$$

Integrate this to get the formula for integration by parts:

$$
\int u v^{\prime} d x=u v-\int u^{\prime} v d x
$$

Example 1. $\int \tan ^{-1} x d x$.
At first, it's not clear how integration by parts helps. Write

$$
\int \tan ^{-1} x d x=\int \tan ^{-1} x(1 \cdot d x)=\int u v^{\prime} d x
$$

with

$$
u=\tan ^{-1} x \quad \text { and } \quad v^{\prime}=1
$$

Therefore,

$$
v=x \quad \text { and } \quad u^{\prime}=\frac{1}{1+x^{2}}
$$

Plug all of these into the formula for integration by parts to get:

$$
\begin{gathered}
\int \tan ^{-1} x d x=\int u v^{\prime} d x=\left(\tan ^{-1} x\right) x-\int \frac{1}{1+x^{2}}(x) d x \\
=x \tan ^{-1} x-\frac{1}{2} \ln \left|1+x^{2}\right|+c
\end{gathered}
$$

Alternative Approach to Integration by Parts

As above, the product rule:

$$
(u v)^{\prime}=u^{\prime} v+u v^{\prime}
$$

can be rewritten as

$$
u v^{\prime}=(u v)^{\prime}-u^{\prime} v
$$

This time, let's take the definite integral:

$$
\int_{a}^{b} u v^{\prime} d x=\int_{a}^{b}(u v)^{\prime} d x-\int_{a}^{b} u^{\prime} v d x
$$

By the fundamental theorem of calculus, we can say

$$
\int_{a}^{b} u v^{\prime} d x=\left.u v\right|_{a} ^{b}-\int_{a}^{b} u^{\prime} v d x
$$

Another notation in the indefinite case is

$$
\int u d v=u v-\int v d u
$$

This is the same because

$$
d v=v^{\prime} d x \Longrightarrow u v^{\prime} d x=u d v \quad \text { and } \quad d u=u^{\prime} d x \Longrightarrow u^{\prime} v d x=v u^{\prime} d x=v d u
$$

Example 2. $\int(\ln x) d x$

$$
\begin{gathered}
u=\ln x ; d u=\frac{1}{x} d x \quad \text { and } \quad d v=d x ; v=x \\
\int(\ln x) d x=x \ln x-\int x\left(\frac{1}{x}\right) d x=x \ln x-\int d x=x \ln x-x+c
\end{gathered}
$$

We can also use "advanced guessing" to solve this problem. We know that the derivative of something equals $\ln x$:

$$
\frac{d}{d x}(? ?)=\ln x
$$

Let's try

$$
\frac{d}{d x}(x \ln x)=\ln x+x \cdot \frac{1}{x}=\ln x+1
$$

That's almost it, but not quite. Let's repair this guess to get:

$$
\frac{d}{d x}(x \ln x-x)=\ln x+1-1=\ln x
$$

Reduction Formulas (Recurrence Formulas)

Example 3. $\int(\ln x)^{n} d x$
Let's try:

$$
\begin{gathered}
u=(\ln x)^{n} \Longrightarrow u^{\prime}=n(\ln x)^{n-1}\left(\frac{1}{x}\right) \\
v^{\prime}=d x ; v=x
\end{gathered}
$$

Plugging these into the formula for integration by parts gives us:

$$
\int(\ln x)^{n} d x=x(\ln x)^{n}-\int n(\ln x)^{n-1} x\left(\frac{1}{x}\right)^{1} d x
$$

Keep repeating integration by parts to get the full formula: $n \rightarrow(n-1) \rightarrow(n-2) \rightarrow(n-3) \rightarrow$ etc
Example 4. $\int x^{n} e^{x} d x$ Let's try:

$$
u=x^{n} \Longrightarrow u^{\prime}=n x^{n-1} ; \quad v^{\prime}=e^{x} \Longrightarrow v=e^{x}
$$

Putting these into the integration by parts formula gives us:

$$
\int x^{n} e^{x} d x=x^{n} e^{x}-\int n x^{n-1} e^{x} d x
$$

Repeat, going from $n \rightarrow(n-1) \rightarrow(n-2) \rightarrow$ etc.

Bad news: If you change the integrals just a little bit, they become impossible to evaluate:

$$
\begin{aligned}
& \int\left(\tan ^{-1} x\right)^{2} d x=\text { impossible } \\
& \int \frac{e^{x}}{x} d x=\text { also impossible }
\end{aligned}
$$

Good news: When you can't evaluate an integral, then

$$
\int_{1}^{2} \frac{e^{x}}{x} d x
$$

is an answer, not a question. This is the solution- you don't have to integrate it!
The most important thing is setting up the integral! (Once you've done that, you can always evaluate it numerically on a computer.) So, why bother to evaluate integrals by hand, then? Because you often get families of related integrals, such as

$$
F(a)=\int_{1}^{\infty} \frac{e^{x}}{x^{a}} d x
$$

where you want to find how the answer depends on, say, a.

Arc Length

This is very useful to know for 18.02 (multi-variable calculus).

Figure 1: Infinitesimal Arc Length $d s$

Figure 2: Zoom in on Figure 1 to see an approximate right triangle.
In Figures 1 and 2, s denotes arc length and $d s=$ the infinitesmal of arc length.

$$
d s=\sqrt{(d x)^{2}+(d y)^{2}}=\sqrt{1+(d y / d x)^{2}} d x
$$

Integrating with respect to $d s$ finds the length of a curve between two points (see Figure 3).
To find the length of the curve between P_{0} and P_{1}, evaluate:

$$
\int_{P_{0}}^{P_{1}} d s
$$

Figure 3: Find length of curve between P_{0} and P_{1}.

We want to integrate with respect to x, not s, so we do the same algebra as above to find $d s$ in terms of $d x$.

$$
\frac{(d s)^{2}}{(d x)^{2}}=\frac{(d x)^{2}}{(d x)^{2}}+\frac{(d y)^{2}}{(d x)^{2}}=1+\left(\frac{d y}{d x}\right)^{2}
$$

Therefore,

$$
\int_{P_{0}}^{P_{1}} d s=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

Example 5: The Circle. $x^{2}+y^{2}=1$ (see Figure 4).

Figure 4: The circle in Example 1.

We want to find the length of the arc in Figure 5 .

Figure 5: Arc length to be evaluated.

$$
\begin{gathered}
y=\sqrt{1-x^{2}} \\
\frac{d y}{d x}=\frac{-2 x}{\sqrt{1-x^{2}}}\left(\frac{1}{2}\right)=\frac{-x}{\sqrt{1-x^{2}}} \\
d s=\sqrt{1+\left(\frac{-x}{\sqrt{1-x^{2}}}\right)^{2} d x} \\
1+\left(\frac{-x}{\sqrt{1-x^{2}}}\right)^{2}=1+\frac{x^{2}}{1-x^{2}}=\frac{1-x^{2}+x^{2}}{1-x^{2}}=\frac{1}{1-x^{2}} \\
d s=\sqrt{\frac{1}{1-x^{2}}} d x \\
s=\int_{0}^{a} \frac{d x}{\sqrt{1-x^{2}}}=\left.\sin ^{-1} x\right|_{0} ^{a}=\sin ^{-1} a-\sin ^{-1} 0=\sin ^{-1} a \\
\sin s=a
\end{gathered}
$$

This is illustrated in Figure 6

Figure 6: $s=$ angle in radians.

Parametric Equations

Example 6.

$$
\begin{aligned}
& x=a \cos t \\
& y=a \sin t
\end{aligned}
$$

Ask yourself: what's constant? What's varying? Here, t is variable and a is constant. Is there a relationship between x and y ? Yes:

$$
x^{2}+y^{2}=a^{2} \cos ^{2} t+a^{2} \sin ^{2} t=a^{2}
$$

Extra information (besides the circle):
At $t=0$,

$$
x=a \cos 0=a \quad \text { and } \quad y=a \sin 0=0
$$

At $t=\frac{\pi}{2}$,

$$
x=a \cos \frac{\pi}{2}=0 \quad \text { and } \quad y=a \sin \frac{\pi}{2}=a
$$

Thus, for $0 \leq t \leq \pi / 2$, a quarter circle is traced counter-clockwise (Figure 7).

Figure 7: Example 6. $x=a \cos t, y=a \sin t$; the particle is moving counterclockwise.

Example 7: The Ellipse See Figure 8 .

$$
\begin{gathered}
x=2 \sin t ; \quad y=\cos t \\
\frac{x^{2}}{4}+y^{2}=1\left(\Longrightarrow(2 \sin t)^{2} / 4+(\cos t)^{2}=\sin ^{2} t+\cos ^{2} t=1\right)
\end{gathered}
$$

$$
\mathrm{t}=0
$$

$$
\mathrm{t}=\pi / 2
$$

Figure 8: Ellipse: $x=2 \sin t, y=\cos t$ (traced clockwise).

Arclength $d s$ for Example 6.

$$
\begin{gathered}
d x=-a \sin t d t, \quad d y=a \cos t d t \\
d s=\sqrt{(d x)^{2}+(d y)^{2}}=\sqrt{(-a \sin t d t)^{2}+(a \cos t d t)^{2}}=\sqrt{(a \sin t)^{2}+(a \cos t)^{2}} d t=a d t
\end{gathered}
$$

