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Lecture 30 18.01 Fall 2006 

Lecture 30: Integration by Parts, Reduction
Formulae 

Integration by Parts 

Remember the product rule: 
(uv)� = u�v + uv� 

We can rewrite that as 
uv� = (uv)� − u�v 

Integrate this to get the formula for integration by parts: 

uv� dx = uv − u�v dx 

Example 1. tan−1 x dx. 

At first, it’s not clear how integration by parts helps. Write 

tan−1 x dx = tan−1 x(1 dx) = uv� dx· 

with 
u = tan−1 x and v� = 1. 

Therefore, 
1 

v = x and u� = 
1 + x2 

Plug all of these into the formula for integration by parts to get: 

1 
tan−1 x dx = uv� dx = (tan−1 x)x − 

1 + x2 
(x)dx 

= x tan−1 x − 
1
2 

ln |1 + x 2| + c 

Alternative Approach to Integration by Parts 

As above, the product rule: 
(uv)� = u�v + uv� 

can be rewritten as 
uv� = (uv)� − u�v 

This time, let’s take the definite integral: � b � b � b 

uv� dx = (uv)� dx − u�v dx 
a a a 
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By the fundamental theorem of calculus, we can say � b � � b�b 
uv� dx = uv� u�v dx 

a 
−

a a 

Another notation in the indefinite case is 

u dv = uv − v du 

This is the same because 

dv = v� dx = uv� dx = u dv and du = u� dx = u�v dx = vu� dx = v du⇒ ⇒ 

Example 2. (ln x)dx 

1 
u = ln x; du = dx and dv = dx; v = x 

x � � � � �
1

(ln x)dx = x ln x − x dx = x ln x − dx = x ln x − x + c 
x 

We can also use “advanced guessing” to solve this problem. We know that the derivative of 
something equals ln x: 

d 
(??) = ln x 

dx 
Let’s try 

d 1
(x ln x) = ln x + x = ln x + 1 

dx 
· 
x 

That’s almost it, but not quite. Let’s repair this guess to get: 

d 
(x ln x − x) = ln x + 1 − 1 = ln x 

dx 

Reduction Formulas (Recurrence Formulas) 

Example 3. (ln x)n 
dx 

Let’s try: � �
1 

u = (ln x)n = u� = n(ln x)n−1 ⇒ 
x 

v� = dx; v = x 

Plugging these into the formula for integration by parts gives us: 

� � � � 1 
1���(ln x)ndx = x(ln x)n n(ln x)n−1 x � dx− 

� x 

Keep repeating integration by parts to get the full formula: n (n − 1) (n − 2) (n − 3) etc � 
→ → → → 

Example 4. x n e x dx Let’s try: 

u = x n = u� = nx n−1; v� = e x = v = e x ⇒ ⇒ 
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Putting these into the integration by parts formula gives us: 

n n x x e x dx = x e nx n−1 e x dx− 

Repeat, going from n → (n − 1) → (n − 2) → etc. 

Bad news: If you change the integrals just a little bit, they become impossible to evaluate: � �2
tan−1 x dx = impossible 

xe
dx = also impossible 

x 

Good news: When you can’t evaluate an integral, then � 2 xe
dx 

1 x 

is an answer, not a question. This is the solution– you don’t have to integrate it! 

The most important thing is setting up the integral! (Once you’ve done that, you can always 
evaluate it numerically on a computer.) So, why bother to evaluate integrals by hand, then? Because 
you often get families of related integrals, such as 

x∞ e
F (a) = dx 

xa 
1 

where you want to find how the answer depends on, say, a. 
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Arc Length 

This is very useful to know for 18.02 (multi-variable calculus). 

y

x

ds

dx
dyy=f(x)

Figure 1: Infinitesimal Arc Length ds 

dy

dx

ds

Figure 2: Zoom in on Figure 1 to see an approximate right triangle. 

In Figures 1 and 2, s denotes arc length and ds = the infinitesmal of arc length. 

ds = (dx)2 + (dy)2 = 1 + (dy/dx)2dx 

Integrating with respect to ds finds the length of a curve between two points (see Figure 3). 

To find the length of the curve between P0 and P1, evaluate: � P1 

ds 
P0 
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P₀

P₁

a b

Figure 3: Find length of curve between P0 and P1. 

We want to integrate with respect to x, not s, so we do the same algebra as above to find ds in 
terms of dx. 

(ds)2 (dx)2 (dy)2 � 
dy 

�2 

= + = 1 + 
(dx)2 (dx)2 (dx)2 dx 

Therefore, �� P1 
� b � �2 

ds = 1 + 
dy 

dx 
dxP0 a 

Example 5: The Circle. x 2 + y 2 = 1 (see Figure 4). 

Figure 4: The circle in Example 1. 
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We want to find the length of the arc in Figure 5: 

a

Figure 5: Arc length to be evaluated. 

y = 1 − x2 

dy −2x 1 −x 
dx 

= √
1 − x2 2

= √
1 − x2 � �2 

ds = 1 + √
1 

−
− 

x

x2 
dx 

� �2 

1 + √
1 

−
− 

x

x2 
= 1 + 

1 − 
x2 

x2 
=

1 −
1 
x

− 

2 

x

+ 
2 

x2 

=
1 − 

1 
x2 

1 
ds = dx

1 − x2 � a ⏐dx ⏐a 
s = √

1 − x2 
= sin−1 x⏐ 

0 
= sin−1 a − sin−1 0 = sin−1 a 

0 

sin s = a 

This is illustrated in Figure 6. 
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a
1

1

a

s

Figure 6: s = angle in radians. 

Parametric Equations 

Example 6. 
x = a cos t 

y = a sin t 

Ask yourself: what’s constant? What’s varying? Here, t is variable and a is constant. 
Is there a relationship between x and y? Yes: 

x 2 + y 2 = a 2 cos2 t + a 2 sin2 t = a 2 

Extra information (besides the circle): 
At t = 0, 

x = a cos 0 = a and y = a sin 0 = 0 
π

At t = ,
2 

π π 
x = a cos = 0 and y = a sin = a

2 2 

Thus, for 0 ≤ t ≤ π/2, a quarter circle is traced counter-clockwise (Figure 7). 
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(a,0)
t=0

(0,a)
t=π/2

Figure 7: Example 6. x = a cos t, y = a sin t; the particle is moving counterclockwise. 

Example 7: The Ellipse See Figure 8. 

x = 2 sin t; y = cos t 
2x

+ y 2 = 1( = (2 sin t)2/4 + (cos t)2 = sin2t + cos2t = 1) 
4 

⇒ 

(2,0)
t=π/2

t=0
(0,1)

Figure 8: Ellipse: x = 2 sin t, y = cos t (traced clockwise). 

Arclength ds for Example 6. 

dx = −a sin t dt, dy = a cos t dt 

ds = (dx)2 + (dy)2 = (−a sin t dt)2 + (a cos t dt)2 = (a sin t)2 + (a cos t)2 dt = a dt 
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