MIT OpenCourseWare
http://ocw.mit.edu

18.01 Single Variable Calculus

Fall 2006

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 34: Indeterminate Forms - L'Hôpital's Rule

L'Hôpital's Rule

(Two correct spellings: "L'Hôpital" and "L'Hospital")
Sometimes, we run into indeterminate forms. These are things like

$$
\frac{0}{0}
$$

and

$$
\frac{\infty}{\infty}
$$

For instance, how do you deal with the following?

$$
\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}-1}=\frac{0}{0} ? ?
$$

Example 0. One way of dealing with this is to use algebra to simplify things:

$$
\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}-1}=\lim _{x \rightarrow 1} \frac{(x-1)\left(x^{2}+x+1\right)}{(x-1)(x+1)}=\lim _{x \rightarrow 1} \frac{x^{2}+x+1}{x+1}=\frac{3}{2}
$$

In general, when $f(a)=g(a)=0$,

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{\frac{f(x)}{x-a}}{\frac{g(x)}{x-a}}=\frac{\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}}{\lim _{x \rightarrow a} \frac{g(x)-g(a)}{x-a}}=\frac{f^{\prime}(a)}{g^{\prime}(a)}
$$

This is the easy version of L'Hôpital's rule:

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{f^{\prime}(a)}{g^{\prime}(a)}
$$

Note: this only works when $g^{\prime}(a) \neq 0$!
In example 0 ,

$$
\begin{gathered}
f(x)=x^{3}=1 ; g(x)=x^{2}-1 \\
f^{\prime}(x)=3 x^{2} ; g^{\prime}(x)=2 x \quad \Longrightarrow f^{\prime}(1)=3 ; g^{\prime}(1)=2
\end{gathered}
$$

The limit is $f^{\prime}(1) / g^{\prime}(1)=3 / 2$. Now, let's go on to the full L'Hôpital rule.

Example 1. Apply L'Hôpital's rule (a.k.a. "L'Hop") to

$$
\lim _{x \rightarrow 1} \frac{x^{15}-1}{x^{3}-1}
$$

to get

$$
\lim _{x \rightarrow 1} \frac{x^{15}-1}{x^{3}-1}=\lim _{x \rightarrow 1} \frac{15 x^{14}}{3 x^{2}}=\frac{15}{3}=5
$$

Let's compare this with the answer we'd get if we used linear approximation techniques, instead of L'Hôpital's rule:

$$
x^{15}-1 \approx 15(x-1)
$$

(Here, $f(x)=x^{15}-1, a=1, f(a)=b=0, m=f^{\prime}(1)=15$, and $f(x) \approx m(x-a)+b$.)
Similarly,

$$
x^{3}-1 \approx 3(x-1)
$$

Therefore,

$$
\frac{x^{15}-1}{x^{3}-1} \approx \frac{15(x-1)}{3(x-1)}=5
$$

Example 2. Apply L'Hop to

$$
\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}
$$

to get

$$
\lim _{x \rightarrow 0} \frac{3 \cos 3 x}{1}=3
$$

This is the same as

$$
\left.\frac{d}{d x} \sin (3 x)\right|_{x=0}=\left.3 \cos (3 x)\right|_{x=0}=3
$$

Example 3.

$$
\begin{gathered}
\lim _{x \rightarrow \frac{\pi}{4}} \frac{\sin x-\cos x}{x-\frac{\pi}{4}}=\lim _{x \rightarrow \frac{\pi}{4}} \frac{\cos x+\sin x}{1}=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\sqrt{2} \\
f(x)=\sin x-\cos x, f^{\prime}(x)=\cos x+\sin x \\
f^{\prime}\left(\frac{\pi}{4}\right)=\sqrt{2}
\end{gathered}
$$

Remark: Derivatives $\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}$ are always a $\frac{0}{0}$ type of limit.

Example 4. $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}$.
Use L'Hôpital's rule to evaluate the limit:

$$
\lim _{x \rightarrow 0} \frac{\cos x-1}{x}=\lim _{x \rightarrow 0} \frac{-\sin x}{x}=0
$$

Example 5. $\lim _{x \rightarrow 0} \frac{\cos x-1}{x^{2}}$.

$$
\lim _{x \rightarrow 0} \frac{\cos x-1}{x^{2}}=\lim _{x \rightarrow 0} \frac{\cos x-1}{x^{2}}=\lim _{x \rightarrow 0} \frac{-\sin x}{2 x}=\lim _{x \rightarrow 0} \frac{-\cos x}{2}=-\frac{1}{2}
$$

Just to check, let's compare that answer to the one we would get if we used quadratic approximation techniques. Remember that:

$$
\begin{gathered}
\cos x \approx 1-\frac{1}{2} x^{2} \quad(x \approx 0) \\
\frac{\cos x-1}{x^{2}} \approx \frac{1-\frac{1}{2} x^{2}-1}{x^{2}}=\frac{\left(-\frac{1}{2}\right) x^{2}}{x^{2}}=-\frac{1}{2}
\end{gathered}
$$

Example 6. $\lim _{x \rightarrow 0} \frac{\sin x}{x^{2}}$.

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x^{2}}=\lim _{x \rightarrow 0} \frac{\cos x}{2 x} \quad \text { By L'Hôpital's rule }
$$

If we apply L'Hôpital again, we get

$$
\lim _{x \rightarrow 0}-\frac{\sin x}{2}=0
$$

But this doesn't agree with what we get from taking the linear approximation:

$$
\frac{\sin x}{x^{2}} \approx \frac{x}{x^{2}}=\frac{1}{x} \rightarrow \infty \quad \text { as } \quad x \rightarrow 0^{+}
$$

We can clear up this seeming paradox by noting that

$$
\lim _{x \rightarrow 0} \frac{\cos x}{2 x}=\frac{1}{0}
$$

The limit is not of the form $\frac{0}{0}$, which means L'Hôpital's rule cannot be used. The point is: look before you L'Hôp!

More "interesting" cases that work.

It is also okay to use L'Hôpital's rule on limits of the form $\frac{\infty}{\infty}$, or if $x \rightarrow \infty$, or $x \rightarrow-\infty$. Let's apply this to rates of growth. Which function goes to ∞ faster: $x, e^{a x}$, or $\ln x$?

Example 7. For $a>0$,

$$
\lim _{x \rightarrow \infty} \frac{e^{a x}}{x}=\lim _{x \rightarrow \infty} \frac{a e^{a x}}{1}=+\infty
$$

So $e^{a x}$ grows faster than x (for $a>0$).

Example 8.

$$
\lim _{x \rightarrow \infty} \frac{e^{a x}}{x^{10}}=\text { by L'Hôpital }=\lim _{x \rightarrow \infty} \frac{a e^{a x}}{10 x^{9}}=\lim _{x \rightarrow \infty} \frac{c^{2} e^{a x}}{10 \cdot 9 x^{8}}=\cdots=\lim _{x \rightarrow \infty} \frac{a^{10} e^{a x}}{10!}=\infty
$$

You can apply L'Hôpital's rule ten times. There's a better way, though:

$$
\begin{gathered}
\left(\frac{e^{a x}}{x^{10}}\right)^{1 / 10}=\frac{e^{a x / 10}}{x} \\
\lim _{x \rightarrow \infty} \frac{e^{a x}}{x^{10}}=\lim _{x \rightarrow \infty}\left(\frac{e^{a x / 10}}{x}\right)^{10}=\infty^{10}=\infty
\end{gathered}
$$

Example 9.

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{x^{1 / 3}}=\lim _{x \rightarrow \infty} \frac{1 / x}{1 / 3 x^{-2 / 3}}=\lim _{x \rightarrow \infty} 3 x^{-1 / 3}=0
$$

Combining the preceding examples, $\ln x \ll x^{1 / 3} \ll x \ll x^{10} \ll e^{a x} \quad(x \rightarrow \infty, a>0)$
L'Hôpital's rule applies to $\frac{0}{0}$ and $\frac{\infty}{\infty}$. But, we sometimes face other indeterminate limits, such as $1^{\infty}, 0^{0}$, and $0 \cdot \infty$. Use algebra, exponentials, and logarithms to put these in L'Hôpital form.

Example 10. $\lim _{x \rightarrow 0} x^{x}$ for $x>0$.
Because the exponent is a variable, use base e :

$$
\lim _{x \rightarrow 0} x^{x}=\lim _{x \rightarrow 0} e^{x \ln x}
$$

First, we need to evaluate the limit of the exponent

$$
\lim _{x \rightarrow 0} x \ln x
$$

This limit has the form $0 \cdot \infty$. We want to put it in the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$.
Let's try to put it into the $\frac{0}{0}$ form:

$$
\frac{x}{1 / \ln x}
$$

We don't know how to find $\lim _{x \rightarrow 0} \frac{1}{\ln x}$, though, so that approach isn't helpful.
Instead, let's try to put it into the $\frac{\infty}{\infty}$ form:

$$
\frac{\ln x}{1 / x}
$$

Using L'Hôpital's rule, we find

$$
\lim _{x \rightarrow 0} x \ln x=\lim _{x \rightarrow 0} \frac{\ln x}{1 / x}=\lim _{x \rightarrow 0} \frac{1 / x}{-1 / x^{2}}=\lim _{x \rightarrow 0}(-x)=0
$$

Therefore,

$$
\lim _{x \rightarrow 0} x^{x}=\lim _{x \rightarrow 0} e^{x \ln x}=e^{\lim _{x \rightarrow 0}(x \ln x)}=e^{0}=1
$$

