MIT OpenCourseWare http://ocw.mit.edu

18.01 Single Variable Calculus Fall 2006

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 4 Chain Rule, and Higher Derivatives

Chain Rule

We've got general procedures for differentiating expressions with addition, subtraction, and multiplication. What about composition?

Example 1. $y = f(x) = \sin x, x = g(t) = t^2$. So, $y = f(g(t)) = \sin(t^2)$. To find $\frac{dy}{dt}$, write

$$\begin{array}{c|c} t_0 = t_0 & t = t_0 + \Delta t \\ \hline x_0 = g(t_0) & x = x_0 + \Delta x \\ y_0 = f(x_0) & y = y_0 + \Delta y \end{array}$$

$$\frac{\Delta y}{\Delta t} = \frac{\Delta y}{\Delta x} \cdot \frac{\Delta x}{\Delta t}$$

As $\Delta t \to 0$, $\Delta x \to 0$ too, because of continuity. So we get:

$$\frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt} \leftarrow \text{The Chain Rule!}$$

In the example, $\frac{dx}{dt} = 2t$ and $\frac{dy}{dx} = \cos x$.

So,
$$\frac{d}{dt} (\sin(t^2)) = (\frac{dy}{dx})(\frac{dx}{dt})$$

= $(\cos x)(2t)$
= $(2t) (\cos(t^2))$

Another notation for the chain rule

$$\frac{d}{dt}f(g(t)) = f'(g(t))g'(t) \qquad \left(\text{ or } \quad \frac{d}{dx}f(g(x)) = f'(g(x))g'(x) \right)$$

Example 1. (continued) Composition of functions $f(x) = \sin x$ and $g(x) = x^2$

$$\begin{array}{rcl} (f \circ g)(x) & = & f(g(x)) & = & \sin(x^2) \\ (g \circ f)(x) & = & g(f(x)) & = & \sin^2(x) \\ \text{Note:} & f \circ g & \neq & g \circ f. \quad Not \ Commutative! \end{array}$$

Figure 1: Composition of functions: $f \circ g(x) = f(g(x))$

Example 2. $\frac{d}{dx}\cos\left(\frac{1}{x}\right) = ?$ Let $u = \frac{1}{x}$ $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ $\frac{dy}{du} = -\sin(u); \qquad \frac{du}{dx} = -\frac{1}{x^2}$ $\frac{dy}{dx} = \frac{\sin(u)}{x^2} = (-\sin u)\left(\frac{-1}{x^2}\right) = \frac{\sin\left(\frac{1}{x}\right)}{x^2}$

Example 3. $\frac{d}{dx}(x^{-n}) = ?$

There are two ways to proceed. $x^{-n} = \left(\frac{1}{x}\right)^n$, or $x^{-n} = \frac{1}{x^n}$

1.
$$\frac{d}{dx}(x^{-n}) = \frac{d}{dx}\left(\frac{1}{x}\right)^n = n\left(\frac{1}{x}\right)^{n-1}\left(\frac{-1}{x^2}\right) = -nx^{-(n-1)}x^{-2} = -nx^{-n-1}$$

2. $\frac{d}{dx}(x^{-n}) = \frac{d}{dx}\left(\frac{1}{x^n}\right) = nx^{n-1}\left(\frac{-1}{x^{2n}}\right) = -nx^{-n-1}$ (Think of x^n as u)

Higher Derivatives

Higher derivatives are derivatives of derivatives. For instance, if g = f', then h = g' is the second derivative of f. We write h = (f')' = f''.

Notations

f'(x)	Df	$rac{df}{dx}$
f''(x)	D^2f	$\frac{d^2f}{dx^2}$
$f^{\prime\prime\prime}(x)$	D^3f	$\frac{d^3f}{dx^3}$
$f^{(n)}(x)$	$D^n f$	$\frac{d^n f}{dx^n}$

Higher derivatives are pretty straightforward —- just keep taking the derivative!

Example. $D^n x^n = ?$ Start small and look for a pattern.

$$\begin{array}{rclrcl} Dx & = & 1 \\ D^2x^2 & = & D(2x) = 2 & (=1\cdot 2) \\ D^3x^3 & = & D^2(3x^2) = D(6x) = 6 & (=1\cdot 2\cdot 3) \\ D^4x^4 & = & D^3(4x^3) = D^2(12x^2) = D(24x) = 24 & (=1\cdot 2\cdot 3\cdot 4) \\ D^nx^n & = & n! \leftarrow \text{we guess, based on the pattern we're seeing here.} \end{array}$$

The notation n! is called "n factorial" and defined by $n! = n(n-1)\cdots 2 \cdot 1$ **Proof by Induction:** We've already checked the base case (n = 1).

Induction step: Suppose we know $D^n x^n = n! (n^{th} \text{ case})$. Show it holds for the $(n+1)^{st}$ case.

$$D^{n+1}x^{n+1} = D^n (Dx^{n+1}) = D^n ((n+1)x^n) = (n+1)D^n x^n = (n+1)(n!)$$

$$D^{n+1}x^{n+1} = (n+1)!$$

Proved!