MIT OpenCourseWare
http://ocw.mit.edu

18.01 Single Variable Calculus

Fall 2006

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 4
 Chain Rule, and Higher Derivatives

Chain Rule

We've got general procedures for differentiating expressions with addition, subtraction, and multiplication. What about composition?

Example 1. $y=f(x)=\sin x, x=g(t)=t^{2}$.
So, $y=f(g(t))=\sin \left(t^{2}\right)$. To find $\frac{d y}{d t}$, write

$$
\begin{array}{c|c}
t_{0}=t_{0} & t=t_{0}+\Delta t \\
\hline x_{0}=g\left(t_{0}\right) & x=x_{0}+\Delta x \\
\hline y_{0}=f\left(x_{0}\right) & y=y_{0}+\Delta y \\
\frac{\Delta y}{\Delta t}=\frac{\Delta y}{\Delta x} \cdot \frac{\Delta x}{\Delta t}
\end{array}
$$

As $\Delta t \rightarrow 0, \Delta x \rightarrow 0$ too, because of continuity. So we get:

$$
\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t} \leftarrow \text { The Chain Rule! }
$$

In the example, $\frac{d x}{d t}=2 t$ and $\frac{d y}{d x}=\cos x$.

$$
\text { So, } \begin{aligned}
\frac{d}{d t}\left(\sin \left(t^{2}\right)\right) & =\left(\frac{d y}{d x}\right)\left(\frac{d x}{d t}\right) \\
& =(\cos x)(2 t) \\
& =(2 t)\left(\cos \left(t^{2}\right)\right)
\end{aligned}
$$

Another notation for the chain rule

$$
\frac{d}{d t} f(g(t))=f^{\prime}(g(t)) g^{\prime}(t) \quad\left(\text { or } \quad \frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)\right)
$$

Example 1. (continued) Composition of functions $f(x)=\sin x$ and $g(x)=x^{2}$

$$
\begin{array}{rlll}
(f \circ g)(x) & =f(g(x)) & =\sin \left(x^{2}\right) \\
(g \circ f)(x) & =g(f(x)) & =\sin ^{2}(x) \\
\text { Note: } f \circ g & \neq g \circ f . & \text { Not Commutative! }
\end{array}
$$

Figure 1: Composition of functions: $f \circ g(x)=f(g(x))$

Example 2. $\frac{d}{d x} \cos \left(\frac{1}{x}\right)=$?
Let $u=\frac{1}{x}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d u} \frac{d u}{d x} \\
\frac{d y}{d u} & =-\sin (u) ; \quad \frac{d u}{d x}=-\frac{1}{x^{2}} \\
\frac{d y}{d x} & =\frac{\sin (u)}{x^{2}}=(-\sin u)\left(\frac{-1}{x^{2}}\right)=\frac{\sin \left(\frac{1}{x}\right)}{x^{2}}
\end{aligned}
$$

Example 3. $\frac{d}{d x}\left(x^{-n}\right)=$?
There are two ways to proceed. $x^{-n}=\left(\frac{1}{x}\right)^{n}$, or $x^{-n}=\frac{1}{x^{n}}$

1. $\frac{d}{d x}\left(x^{-n}\right)=\frac{d}{d x}\left(\frac{1}{x}\right)^{n}=n\left(\frac{1}{x}\right)^{n-1}\left(\frac{-1}{x^{2}}\right)=-n x^{-(n-1)} x^{-2}=-n x^{-n-1}$
2. $\frac{d}{d x}\left(x^{-n}\right)=\frac{d}{d x}\left(\frac{1}{x^{n}}\right)=n x^{n-1}\left(\frac{-1}{x^{2 n}}\right)=-n x^{-n-1}\left(\right.$ Think of x^{n} as $\left.u\right)$

Higher Derivatives

Higher derivatives are derivatives of derivatives. For instance, if $g=f^{\prime}$, then $h=g^{\prime}$ is the second derivative of f. We write $h=\left(f^{\prime}\right)^{\prime}=f^{\prime \prime}$.

Notations

$f^{\prime}(x)$	$D f$	$\frac{d f}{d x}$
$f^{\prime \prime}(x)$	$D^{2} f$	$\frac{d^{2} f}{d x^{2}}$
$f^{\prime \prime \prime}(x)$	$D^{3} f$	$\frac{d^{3} f}{d x^{3}}$
$f^{(n)}(x)$	$D^{n} f$	$\frac{d^{n} f}{d x^{n}}$

Higher derivatives are pretty straightforward - just keep taking the derivative!

Example. $\quad D^{n} x^{n}=$?
Start small and look for a pattern.

$$
\begin{aligned}
D x & =1 \\
D^{2} x^{2} & =D(2 x)=2 \quad(=1 \cdot 2) \\
D^{3} x^{3} & =D^{2}\left(3 x^{2}\right)=D(6 x)=6 \quad(=1 \cdot 2 \cdot 3) \\
D^{4} x^{4} & =D^{3}\left(4 x^{3}\right)=D^{2}\left(12 x^{2}\right)=D(24 x)=24 \quad(=1 \cdot 2 \cdot 3 \cdot 4) \\
D^{n} x^{n} & =n!\leftarrow \text { we guess, based on the pattern we're seeing here. }
\end{aligned}
$$

The notation n ! is called " n factorial" and defined by $n!=n(n-1) \cdots 2 \cdot 1$
Proof by Induction: We've already checked the base case $(n=1)$.

Induction step: Suppose we know $D^{n} x^{n}=n!\left(n^{\text {th }}\right.$ case $)$. Show it holds for the $(n+1)^{\text {st }}$ case.

$$
\begin{aligned}
& D^{n+1} x^{n+1}=D^{n}\left(D x^{n+1}\right)=D^{n}\left((n+1) x^{n}\right)=(n+1) D^{n} x^{n}=(n+1)(n!) \\
& D^{n+1} x^{n+1}=(n+1)!
\end{aligned}
$$

Proved!

