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PROFESSOR: To begin today I want to remind you, I need to write it down on the board at least twice, of the

fundamental theorem of calculus. We called it FTC 1 because it's the first version of the

fundamental theorem. We'll be talking about another version, called the second version, today.

And what it says is this: If F' = f, then the integral from a to b of f(x) dx is equal to F(b) - F(a).

So that's the fundamental theorem of calculus. And the way we used it last time was, this was

used to evaluate integrals. Not surprisingly, that's how we used it. But today, I want to reverse

that point of view. We're going to read the equation backwards, and we're going to write it this

way. And we're going to use f to understand capital F. Or in other words, the derivative to

understand the function.

So that's the reversal of point of view that I'd like to make. And we'll make this point in various

ways. So information about f, about F', gives us information about F. Now, since there were

questions about the mean value theorem, I'm going to illustrate this first by making a

comparison between the fundamental theorem of calculus and the mean value theorem. So

we're going to compare this fundamental theorem of calculus with what we call the mean value

theorem. And in order to do that, I'm going to introduce a couple of notations. I'll write delta F

as F(b) - F(a). And another highly imaginative notation, delta x = b - a. So here's the change in

F, there's the change in x. And then, this fundamental theorem can be written, of course, right

up above there is the formula. And it's the formula for delta F. So this is what we call the

fundamental theorem of calculus.

I'm going to divide by delta x, now. And If I divide by delta x, that's the same thing as 1 / (b-a)

times the integral from a to b of f(x) dx. So I've just rewritten the formula here. And this

expression here, on the right-hand side, is a fairly important one. This is the average of f.

That's the average value of f. Now, so this is going to permit me to make the comparison

between the mean value theorem, which we don't have stated yet here. And the fundamental

theorem. And I'll do it in the form of inequalities. So right in the middle here, I'm going to put

the fundamental theorem. It says that delta F in this notation is equal to, well if I multiply by

delta x again, I can write it as the average of f-- So I'm going to write it as the average of F'



here. Times delta x. So we have this factor here, which is the average of F', or the average of

little f, it's the same thing. And then I multiplied through again. So I put the thing in the red box,

here.

STUDENT: [INAUDIBLE]

PROFESSOR: Isn't what the average of big F?

So the question is, why is this the average of little f rather than the average of big F. So the

average of a function is the typical value. If, for example, little f were constant, little f were

constant, then this integral would be-- So the question is why is this the average. And I'll take a

little second to explain that. But I think I'll explain it over here. Because I'm going to erase it. So

the idea of an average is the following. For example, imagine that a = 0 and b = n, let's say for

example. And so we might sum the function from 1 to n. Now, that would be the sum of the

values from 1 to n. But the average is, we divide by n here. So this is the average. And this is a

kind of Riemann sum, representing the integral from 0 to n, of f(x) dx. Where the increment,

delta x, is 1.

So this is the notion of an average value here, but in the continuum setting, as opposed to the

discrete setting. Whereas what's on the left-hand side is the change in F. The capital F. And

this is the average of the little f. So an average is a sum. And it's like an integral. So, in other

words what I have here is that the change in F is the average of its infinitesimal change times

the amount of time elapsed, if you like. So this is the statement of the fundamental theorem.

Just rewritten. Exactly what I wrote there. But I multiplied back by delta x. Now, let me

compare this with the mean value theorem. The mean value theorem also is an equation. The

mean value theorem says that this is equal to F'(c) delta x. Now, I pulled a fast one on you. I

used capital F's here to make the analogy clear. But the role of the letter is important to make

the transition to this comparison. We're talking about the function capital F here. And its

derivative.

Now, this is true. So now I claim that this thing is fairly specific. Whereas this, unfortunately, is

a little bit vague. And the reason why it's vague is that c is just somewhere in the interval. So

some c-- Sorry, this is some c, in between a and b. So really, since we don't know where this

thing is, we don't know which of the values it is, we can't say what it is. All we can do is say,

well for sure it's less than the largest value, say, the maximum of F', times delta x. And the

only thing we can say for sure on the other end is that it's less than or equal to-- sorry, it's



greater than or equal to the minimum of F' times delta x. Over that same interval. This is over

0 less than-- sorry, a < x < b. So that means that the fundamental theorem of calculus is a

much more specific thing. And indeed it gives the same conclusion. It's much stronger than the

mean value theorem. It's way better than the mean value theorem. In fact, as soon as we

have integrals, we can abandon the mean value theorem. We don't want it. It's too simple-

minded. And what we have is something much more sophisticated, which we can use. Which

is this. So it's obvious that if this is the average, the average is less than the maximum. So it's

obvious that it works just as well to draw this conclusion. And similarly over here with the

minimum. OK, the average is always bigger than the minimum and smaller than the max.

So this is the connection, if you like. And I'm going to elaborate just one step further by talking

about the problem that you had on the exam. So there was an Exam 2 problem. And I'll show

you how it works using the mean value theorem and how it works using integrals. But I'm

going to have to use this notation capital F. So capital F', as opposed to the little f, which was

what was the notation that was on your exam. So we had this situation here. These were the

givens of the problem. And then the question was, the mean value theorem says, or implies, if

you like, it doesn't say it, but it implies it - implies A is less than capital F of 4 is less than B, for

which A and B?

So let's take a look at what it says. Well, the mean value theorem says that F( F(4) - F(0) =

F'(c) (4 - 0). This is this F' times delta x, this is the change in x. And that's the same thing as

1/(1+c) times 4. And so the range of values of this number here is from / 1/(1+0) times 4, that's

4. To, that's the largest value, to the smallest that it gets, which is 1/(1+4) times 4. That's the

range. And so the conclusion is that F(4) - f(0) is between, well, let's see. It's between 4 and

4/5. Which are those two numbers down there. And if you remember that F(0) was 1, this is

the same F(4) is between 5 and 9/5. So that's the way that you were supposed to solve the

problem on the exam.

On the other hand, let's compare to what you would do with the fundamental theorem of

calculus. With the fundamentals theorem of calculus, we have the following formula. F(4) -

F(0) is equal to the integral from 0 to 4 of dx / (1+x). That's what the fundamental theorem

says. And now I claim that we can get these same types of results by a very elementary

observation. It's really the same observation that I made up here, that the average is less than

or equal to the maximum. Which is that the biggest this can ever be is, let's see. The biggest it

is when x is 0, that's 1. So the biggest it ever gets is this. And that's equal to 4. Right? On the



other hand, the smallest it ever gets to be, it's equal to this. The smallest it ever gets to be is

the integral from 0 to 4 of 1/5 dx. Because that's the lowest value that the integrand takes.

When x = 4, it's 1/5. And that's equal to 4/5. Now, there's a little tiny detail which is that really

we know that this is the area of some rectangle and this is strictly smaller. And we know that

these inequalities are actually strict. But that's a minor point. And certainly not one that we'll

pay close attention to.

But now, let me show you what this looks like geometrically. So geometrically, we interpret this

as the area under a curve. Here's a piece of the curve y = 1/(1+x). And it's going up to 4 and

starting at 0 here. And the first estimate that we made - that is, the upper bound - was by

trapping this in this big rectangle here. We compared it to the constant function, which was 1

all the way across. This is y = 1. And then we also trapped it from underneath by the function

which was at the bottom. And this was y = 1/5. And so what this really is is, these things are

the simplest possible Riemann sum. Sort of a silly Riemann sum. This is a Riemann sum with

one rectangle. This is the simplest possible one. And so this is a very, very crude estimate.

You can see it misses by a mile. The larger and the smaller values are off by a factor of 5. But

this one is called the-- this one is the lower Riemann sum. And that one is less than our actual

integral. Which is less than the upper Riemann sum. And you should, by now, have looked at

those upper and lower sums on your homework. So it's just the rectangles underneath and the

rectangles on top.

So at this point, we can literally abandon the mean value theorem. Because we have a much

better way of getting at things. If we chop things up into more rectangles, we'll get much better

numerical approximations. And if we use simpleminded expressions with integrals, we'll be

able to figure out any bound we could get using the mean value theorem. So that's not the

relevance of the mean value theorem. I'll explain to you why we talked about it, even, in a few

minutes. OK, are there any questions before we go on? Yeah.

STUDENT: [INAUDIBLE]

PROFESSOR: I knew that the range of c was from 0 to 4, I should have said that right here. This is true for

this theorem. The mean value theorem comes with an extra statement, which I missed. Which

is that this is for some c between 0 and 4. So I know the range is between 0 and 4. The

reason why it's between 0 and 4 is that's part of the mean value theorem. We started at 0, we

ended at 4. So the c has to be somewhere in between. That's part of the mean value theorem.



STUDENT: [INAUDIBLE]

PROFESSOR: The question is, do you exclude any values that are above 4 and below 0. Yes, absolutely.

The point is that in order to figure out how F changes, capital F changes, between 0 and 4,

you need only pay attention to the values in between. You don't have to pay any attention to

what the function is doing below 0 or above 4. Those things are strictly irrelevant.

STUDENT: [INAUDIBLE]

PROFESSOR: Yeah, I mean it's strictly in between these two numbers. I have to understand what the lowest

and the highest one is.

STUDENT: [INAUDIBLE]

PROFESSOR: It's approaching that, so.

OK. So now, the next thing that we're going to talk about is, since I've got that 1 up there, that

Fundamental Theorem of Calculus 1, I need to talk about version 2. So here is the

Fundamental Theorem of Calculus version 2. I'm going to start out with a function little f, and

I'm going to assume that it's continuous. And then I'm going to define a new function, which is

defined as a definite integral. G(x) is the integral from a to x of f(t) dt. Now, I want to

emphasize here because it's the first time that I'm writing something like this, that this is a fairly

complicated gadget. It plays a very basic and very fundamental but simple role, but it

nevertheless is a little complicated. What's happening here is that the upper limit I've now

called x, and the variable t is ranging between a and x, and that the a and the x are fixed when

I calculate the integral. And the t is what's called the dummy variable. It's the variable of

integration. You'll see a lot of people who will mix this x with this t. And if you do that, you will

get confused, potentially hopelessly confused, in this class. In 18.02 you will be completely lost

if you do that. So don't do it. Don't mix these two guys up. It's actually done by many people in

textbooks, and it's fairly careless. Especially in old-fashioned textbooks. But don't do it.

So here we have this G(x). Now, remember, this G(x) really does make sense. If you give me

an a, and you give me an x, I can figure out what this is, because I can figure out the Riemann

sum. So of course I need to know what the function is, too. But anyway, we have a numerical

procedure for figuring out what the function G is. Now, as is suggested by this mysterious

letter x being in the place where it is, I'm actually going to vary x. So the conclusion is that if

this is true, and this is just a parenthesis, not part of the theorem. It's just an indication of what



the notation means. Then G' = f.

Let me first explain what the significance of this theorem is, from the point of view of

differential equations. G(x) solves the differential equation y' = f(x). So y' = f, I shouldn't put the

x in if I got it here, with the condition y(a) = 0. So it solves this pair of conditions here. The rate

of change, and the initial position is specified here. Because when you integrate from a to a,

you get 0 always. And what this theorem says is you can always solve that equation. When we

did differential equations, I said that already. I said we'll treat these as always solved. Well,

here's the reason. We have a numerical procedure for computing things like this. We could

always solve this equation. And the formula is a fairly complicated gadget, but so far just

associated with Riemann sums.

Alright, now. Let's just do one example. Unfortunately, not a complicated example and maybe

not persuasive as to why you would care about this just yet. But nevertheless very important.

Because this is the quiz question which everybody gets wrong until they practice it. So the

integral from, say 1 to x, of dt / t^2. Let's try this one here. So here's an example of this

theorem, I claim. Now, this is a question which challenges your ability to understand what the

question means. Because it's got a lot of symbols. It's got the integration and it's got the

differentiation. However, what it really is is an exercise in recopying. You look at it and you

write down the answer. And the reason is that, by definition, this function in here is a function

of the form G(x) of the theorem over here. So this is the G(x). And by definition, we said that

G'(x) = f(x). Well, what's the f(x)? Look inside here. It's what's called the integrand. This is the

integral from 0 to x of f(t) dt, right? Where the f(t) is equal to 1 / t^2. So your ability is

challenged. You have to take that 1 / t^2 and you have to plug in the letter x, instead of t, for it.

And then write it down. As I say, this is an exercise in recopying what's there.

So this is quite easy to do, right? I mean, you just look and you write it down. But nevertheless,

it looks like a long, elaborate object here. Pardon me?

STUDENT: [INAUDIBLE]

PROFESSOR: So the question was, why did I integrate.

STUDENT: [INAUDIBLE]

PROFESSOR: Why did I not integrate? Ah. Very good question. Why did I not integrate. The reason why I

didn't integrate is I didn't need to. Just as when you take the antiderivative-- sorry, the



derivative of something, you take the antiderivative, you get back to the thing. So, in this case,

we're taking the antiderivative of something and we're differentiating. So we end back in the

same place where we started. We started with f(t), we're ending with f. Little f. So you

integrate, and then differentiate. And you get back to the same place. Now, the only difference

between this and the other version is, in this case when you differentiate and integrate you

could be off by a constant. That's what that shift, why there are two pieces to this one. But

there's never an extra piece here. There's no plus c here. When you integrate and

differentiate, you kill whatever the constant is. Because the derivative of a constant is 0. So no

matter what the constant is, hiding inside of G, you're getting the same result. So this is the

basic idea. Now, I just want to double-check it, using the Fundamental Theorem of Calculus 1

here.

So let's actually evaluate the integral. So now I'm going to do what you've suggested, which is

I'm just going to check whether it's true. No, no I am because I'm going just double-check that

it's consistent. It certainly is slower this way, and we're not going to want to do this all the time,

but we might as well check one. So this is our integral. And we know how to do it. No, I need to

do it. And this is -t^(-1), evaluated at 1 and x. Again, there's something subliminally here for

you to think about. Which is that, remember, it's t is ranging between 1 and t = x. And this is

one of the big reasons why this letter t has to be different from x. Because here it's 1 and there

it's x. It's not x. So you can't put an x here. Again, this is t = 1 and this is t = x over there. And

now if I plug that in, I get what? I get -1/x, and then I get -(-1). So this is, let me get rid of those

little t's there. This is a little easier to read. And so now let's check it. It's d/dx. So here's what

G(x) is. G(x) = 1 - 1/x. That's what G(x) is. And if I differentiate that, I get +1 / x^2. That's it.

You see the constant washed away.

So now, here's my job. My job is to prove these theorems. I never did prove them for you. So,

I'm going to prove the Fundamental Theorem of Calculus. But I'm going to do 2 first. And then

I'm going to do 1. And it's just going to take me just one blackboard. It's not that hard. The

proof is by picture. And, using the interpretation as area under the curve. So if here's the value

of a, and this is the graph of the function y equals f of x. Then I want to draw three vertical

lines. One of them is going to be at x. And one of them is going to be at x + delta x. So here I

have the interval from 0 to x, and next I have the interval from x to delta x more than that. And

now the pieces that I've got are the area of this part. So this has area which has a name. It's

called G(x). By definition, G(x), which is sitting right over here in the fundamental theorem, is

the integral from a to x of this function. So it's the area under the curve. So that area is G(x).



Now this other chunk here, I claim that this is delta G. This is the change in G. It's the value of

G(x) that is the area of the whole business all the way up to x + delta x minus the first part,

G(x). So it's what's left over. It's the incremental amount of area there.

And now I am going to carry out a pretty standard estimation here. This is practically a

rectangle. And it's got a base of delta x, and so we need to figure out what its height is. This is

delta G, and it's approximately its base times its height. But what is the height? Well, the height

is maybe either this segment or this segment or something in between. But they're all about

the same. So I'm just going to put in the value at the first point. That's the left end there. So

that's this height here, is f(x). So this is f(x), and so really I approximate it by that rectangle

there. And now if I divide and take the limit, as delta x goes to 0, of delta G / delta x, it's going

to equal f(x). And this is where I'm using the fact that f is continuous. Because I need the

values nearby to be similar to the value in the limit. OK, that's the end. This the end of the

proof, so I'll put a nice little Q.E.D. here.

So we've done Fundamental Theorem of Calculus 2, and now we're ready for Fundamental

Theorem of Calculus 1. So now I still have it on the blackboard to remind you. It says that the

integral of the derivative is the function, at least the difference between the values of the

function at two places. So the place where we start is with this property that F' = f. That's the

starting-- that's the hypothesis. Now, unfortunately, I'm going to have to assume something

extra in order to use the Fundamental Theorem of Calculus 2, which is I'm going to assume

that f is continuous. That's not really necessary, but that's just a very minor technical point,

which I'm just going to ignore. So we're going to start with F' = f. And then I'm going to go

somewhere else. I'm going to define a new function, G(x), which is the integral from a to x of

f(t) dt. This is where we needed all of the labor of Riemann sums. Because otherwise we don't

have a way of making sense out of what this even means.

So hiding behind this one sentence is the fact that we actually have a number. We have a

formula for such functions. So there is a function G(x) which, once you've produced a little f for

me, I can cook up a function capital G for you. Now, we're going to apply this Fundamental

Theorem of Calculus 2, the one that we've already checked. So what does it say? It says that

G' = f. And so now we're in the following situation. We know that F'(x) = G'(x). That's what

we've got so far. And now we have one last step to get a good connection between F and G.

Which is that we can conclude that F(x) is G(x) plus a constant.

Now, this little step may seem innocuous but I remind you that this is the spot that requires the



mean value theorem. So in order not to lie to you, we actually tell you what the underpinnings

of all of calculus are. And they're this: the fact, if you like, that if two functions have the same

derivative, they differ by a constant. Or that if a function has derivative 0, it's a constant itself.

Now, that is the fundamental step that's needed, the underlying step that's needed. And,

unfortunately, there aren't any proofs of it that are less complicated than using the mean value

theorem. And so that's why we talk a little bit about the mean value theorem, because we don't

want to lie to you about what's really going on. Yes.

STUDENT: [INAUDIBLE]

PROFESSOR: The question is how did I get from here, to here. And the answer is that if G' is little f, and we

also know that F' is little f, then F' is G'. OK. Other questions?

Alright, so we're almost done. I just have to work out the arithmetic here. So I start with F(b) -

F(a). And that's equal to (G(b) + c) - (G(a) + c). And then I cancel the c's. So I have here G(b)

- G(a). And now I just have to check what each of these is. So remember the definition of G

here. G(b) is just what we want. The integral from a to b of f(x) dx. Well I called it f(t) dt, that's

the same as f(x) dx now, because I have the limit being b and I'm allowed to use x as the

dummy variable. Now the other one, I claim, is 0. Because it's the integral from a to a. This

one is the integral from a to a. Which gives us 0. So this is just this minus 0, and that's the end.

That's it. I started with F(b) - F(a), I got to the integral. Question?

STUDENT: [INAUDIBLE]

PROFESSOR: How did I get from F(b) - F(a), is (G(b) + c) - (G(a) + c), that's the question.

STUDENT: [INAUDIBLE]

PROFESSOR: Oh, sorry this is an equals sign. Sorry, the second line didn't draw. OK, equals. Because we're

plugging in, for F(x), the formula for it. Yes.

STUDENT: [INAUDIBLE]

PROFESSOR: This step here? Or this one?

STUDENT: [INAUDIBLE]

PROFESSOR: Right. So that was a good question. But the answer is that that's the statement that we're

aiming for. That's the Fundamental Theorem of Calculus 1, which we don't know yet. So we're



trying to prove it, and that's why we haven't, we can't assume it. OK, so let me just notice that

in the example that we had, before we go on to something else here. In the example above,

what we had was the following thing. We had, say, F(x) = -1/x. So F'(x) = 1 / x^2. And, say,

G(x) = 1 - 1/x. And you can see that either way you do that, if you integrate from 1 to 2, let's

say, which is what we had over there, dt / t^2, you're going to get either -1/t, 1 to 2, or, if you

like, 1 - 1/t, 1 to 2. So this is the F version, this is the G version. And that's what plays itself out

here, in this general proof.

Alright. So now I want to go back to the theme for today, which is using little f to understand

capital F. In other words, using the derivative of F to understand capital F. And I want to

illustrate it by some more complicated examples. So I guess I just erased it, but we just took

the antiderivative of 1 / t^2. And there's-- all of the powers work easily, but one. And the tricky

one is the power 1 / x. So let's consider the differential equation L' (x) = 1 / x. And say, with the

initial value L(1) = 0. The solution, so the Fundamental Theorem of Calculus 2 tells us the

solution is this function here. L(x) equals the integral from 1 to x, dt / t. That's how we solve all

such equations. We just integrate, take the definite integral. And I'm starting at 1 because I

insisted that L(1) be 0. So that's the solution to the problem. And now the thing that's

interesting here is that we started from a polynomial. Or we started from a rational, a ratio of

polynomials; that is, 1 / t or 1 / x. And we get to a function which is actually what's known as a

transcendental function. It's not an algebraic function. Yeah, question.

STUDENT: [INAUDIBLE]

PROFESSOR: The question is why is this equal to that. And the answer is, it's for the same reason that this is

equal to that. It's the same reason as this. It's that the 1's cancel. We've taken the value of

something at 2 minus the value at 1. The value at 2 minus the value at 1. And you'll get a 1 in

the one case, and you get a 1 in the other case. And you subtract them and they will cancel.

They'll give you 0. These two things really are equal. This is not a function evaluated at one

place, it's the difference between the function evaluated at 2 and the value at 1. And whenever

you subtract two things like that, constants drop out.

STUDENT: [INAUDIBLE] PROFESSOR: That's right. If I put 2 here, if I put c here, it would have been the

same. It would just have dropped out. It's not there. And that's exactly this arithmetic right

here. It doesn't matter which antiderivative you take. When you take the differences, the c's

will cancel. You always get the same answer in the end. That's exactly why I wrote this down,

so that you would see that. It doesn't matter which one you do.



So, we still have a couple of minutes left here. This is actually-- So let me go back. So here's

the antiderivative of 1 / x, with value 1 at 0. Now, in disguise, we know what this function is. We

know this function is the logarithm function. But this is actually a better way of deriving all of

the formulas for the logarithm. This is a much quicker and more efficient way of doing it. We

had to do it by very laborious processes. This will allow us to do it very easily. And so, I'm

going to do that next time. But rather than do that now, I'm going to point out to you that we

can also get truly new functions.

OK, so there are all kinds of new functions. So this is the first example of this kind would be,

for example, to solve the equation y' = e^(-x^2) with y(0) = 0, let's say. Now, the solution to

that is a function which again I can write down by the fundamental theorem. It's the integral

from 0 to x of e^(-t^2) dt. This is a very famous function. This shape here is known as the bell

curve. And it's the thing that comes up in probability all the time. This shape e^(-x^2). And our

function is geometrically just the area under the curve here. This is F(x). If this place is x. So I

have a geometric definition, I have a way of constructing what it is by Riemann sums. And I

have a function here. But the curious thing about F(x) is that F(x) cannot be expressed in

terms of any function you've seen previously. So logs, exponentials, trig functions, cannot be.

It's a totally new function.

Nevertheless, we'll be able to get any possible piece of information we would want to, out of

this function. It's perfectly acceptable function, it will work just great for us. Just like any other

function. Just like the log. And what this is analogous to is the following kind of thing. If you

take the circle, the ancient Greeks, if you like, already understood that if you have a circle of

radius 1, then its area is pi. So that's a geometric construction of what you could call a new

number. Which is outside of the realm of what you might expect. And the weird thing about this

number pi is that it is not the root of an algebraic equation with rational coefficients. It's what's

called transcendental. Meaning, it's just completely outside of the realm of algebra. And,

indeed, the logarithm function is called a transcendental function, because it's completely out

of the realm of algebra. It's only in calculus that you come up with this kind of thing. So these

kinds of functions will have access to a huge class of new functions here, all of which are

important tools in science and engineering. So, see you next time.


