The Chain Rule, Revisited

Why it's true

We didn't fully explain why the chain rule is true. We'll look at an example that should explain that. Consider the function

$$
y=10 x+b
$$

Here y is changing ten times as fast as x, which is to say that $\frac{d y}{d x}=10$.
Now, what if x is also a function of some variable t ? If

$$
x=5 t+a
$$

then $\frac{d x}{d t}=5$.
The chain rule says that if y is going ten times as fast as x , and x is going five times as fast as t , then y is going fifty times as fast as t . Algebraically, I replace x by $5 t$ in the equation for y to get:

$$
y=10 x+b=10(5 t+a)+b=50 t+10 a+b .
$$

The consequence is that $\frac{d y}{d t}=50=10 \cdot 5=\frac{d y}{d x} \frac{d x}{d t}$. This is, in a nutshell, why the chain rule works and why these rates multiply.

Things it's good for

The chain rule can also make some of the other rules a little easier to remember or possibly to avoid. The messiest rule is perhaps the quotient rule. Notice that $\left(\frac{1}{v}\right)^{\prime}=\left(v^{-1}\right)^{\prime}$. Instead of using the quotient rule here we can use the chain rule with the power -1 and the power law:

$$
\left(\frac{1}{v}\right)^{\prime}=\left(v^{-1}\right)^{\prime}=-v^{-2} v^{\prime}
$$

Similarly,

$$
\left(\frac{u}{v}\right)^{\prime}=\left(u v^{-1}\right)^{\prime}=u^{\prime} v^{-1}+u\left(-v^{-2}\right) v^{\prime}
$$

This explains the minus sign in the formula:

$$
\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

