1. Compute the following derivatives. (Simplify your answers when possible.)
(a) $f^{\prime}(x)$ where $f(x)=\frac{x}{1-x^{2}}$
(b) $f^{\prime}(x)$ where $f(x)=\ln (\cos x)-\frac{1}{2} \sin ^{2}(x)$
(c) $f^{(5)}(x)$, the fifth derivative of f, where $f(x)=x e^{x}$
2. Find the equation of the tangent line to the "astroid" curve defined implicitly by the equation

$$
x^{2 / 3}+y^{2 / 3}=4
$$

at the point $(-\sqrt{27}, 1)$.
3. A particle is moving along a vertical axis so that its position y (in meters) at time t (in seconds) is given by the equation

$$
y(t)=t^{3}-3 t+3, \quad t \geq 0 .
$$

Determine the total distance traveled by the particle in the first three seconds.
4. State the product rule for the derivative of a pair of differentiable functions f and g using your favorite notation. Then use the DEFINITION of the derivative to prove the product rule. Briefly justify your reasoning at each step.
5. Does there exist a set of real numbers a, b and c for which the function

$$
f(x)= \begin{cases}\tan ^{-1}(x) & x \leq 0 \\ a x^{2}+b x+c, & 0<x<2 \\ x^{3}-\frac{1}{4} x^{2}+5, & x \geq 2\end{cases}
$$

is differentiable (i.e. everywhere differentiable)? Explain why or why not. (Here $\tan ^{-1}(x)$ denotes the inverse of the tangent function.)
6. Suppose that f satisfies the equation $f(x+y)=f(x)+f(y)+x^{2} y+x y^{2}$ for all real numbers x and y. Suppose further that

$$
\lim _{x \rightarrow 0} \frac{f(x)}{x}=1
$$

(a) Find $f(0)$.
(b) Find $f^{\prime}(0)$.
(c) Find $f^{\prime}(x)$.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

