1. Compute the following derivatives. (Simplify your answers when possible.)
(a) $f^{\prime}(x)$ where $f(x)=\frac{x}{1-x^{2}}$

$$
f^{\prime}(x)=\frac{1\left(1-x^{2}\right)-(x)(-2 x)}{\left(1-x^{2}\right)^{2}}=\frac{1-x^{2}+2 x^{2}}{\left(1-x^{2}\right)^{2}}=\frac{1+x^{2}}{\left(1-x^{2}\right)^{2}}
$$

(b) $f^{\prime}(x)$ where $f(x)=\ln (\cos x)-\frac{1}{2} \sin ^{2}(x)$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{\cos x}(-\sin x)-\frac{1}{2} \cdot 2 \sin x \cos x \\
& =-\tan x-\sin x \cos x \\
& =-\sin x\left(\frac{1+\cos ^{2} x}{\cos x}\right)
\end{aligned}
$$

(c) $f^{(5)}(x)$, the fifth derivative of f, where $f(x)=x e^{x}$

$$
\begin{aligned}
f^{\prime}(x)=e^{x}+x e^{x} & =1 \cdot e^{x}+x e^{x} \\
f^{\prime \prime}(x)=e^{x}+e^{x}+x e^{x} & =2 \cdot e^{x}+x e^{x} \\
f^{(3)}(x)=2 e^{x}+e^{x}+x e^{x} & =3 \cdot e^{x}+x e^{x} \\
f^{(4)}(x) & =4 \cdot e^{x}+x e^{x} \\
f^{(5)}(x) & =5 \cdot e^{x}+x e^{x}
\end{aligned}
$$

The inductive step in the proof of this for the general case looks like:

$$
\begin{aligned}
f^{(k)}(x) & =k e^{x}+x e^{x} \\
\Rightarrow f^{(k+1)}(x) & =k e^{x}+e^{x}+x e^{x} \\
& =(k+1) e^{x}+x e^{x}
\end{aligned}
$$

2. Find the equation of the tangent line to the "astroid" curve defined implicitly by the equation

$$
x^{2 / 3}+y^{2 / 3}=4
$$

at the point $(-\sqrt{27}, 1)$.
Check that the point is on the curve:

$$
-\sqrt{27}=-3^{3 / 2}
$$

$$
\left(-3^{3 / 2}\right)^{2 / 3}+(1)^{2 / 3}=3+1=4
$$

Use implicit differentiation to get $\left.\frac{d y}{d x}\right|_{(-\sqrt{27}, 1)}$

$$
\begin{aligned}
x^{2 / 3}+y^{2 / 3} & =4 \\
\frac{2}{3} x^{-1 / 3}+\frac{2}{3} y^{-1 / 3} \frac{d y}{d x} & =0 \\
x^{-1 / 3}+y^{-1 / 3} \frac{d y}{d x} & =0 \\
\frac{d y}{d x} & =-\frac{x^{-1 / 3}}{y^{-1 / 3}} \\
& =-\frac{\left(-3^{3 / 2}\right)^{-1 / 3}}{1} \\
\frac{d y}{d x} & =3^{-1 / 2}=\frac{1}{\sqrt{3}} .
\end{aligned}
$$

The slope of the tangent line is $\frac{1}{\sqrt{3}}$. The point-slope formula tells us that the equation of the tangent line is:

$$
\begin{aligned}
y-1 & =\frac{1}{\sqrt{3}}(x+\sqrt{27}) \\
y & =\frac{1}{\sqrt{3}} x+\sqrt{9}+1 \\
y & =\frac{1}{\sqrt{3}} x+4 .
\end{aligned}
$$

3. A particle is moving along a vertical axis so that its position y (in meters) at time t (in seconds) is given by the equation

$$
y(t)=t^{3}-3 t+3, \quad t \geq 0 .
$$

Determine the total distance traveled by the particle in the first three seconds.
Cubic functions tend to increase, then decrease, then increase; we may need to break the journey into three parts to get the total (not net) distance traveled. Thus, we start by finding the max. and min. of $y(t)$.
To find the \min / \max we set $y^{\prime}(t)=0$ and solve for t :

$$
\begin{aligned}
y^{\prime}(t) & =3 t^{2}-3=3\left(t^{2}-1\right)=0 \\
\Rightarrow t & = \pm 1
\end{aligned}
$$

Note that $y^{\prime}(t)>0$ for $t<-1$ and $t>1$ and $y^{\prime}(t)<0$ for $-1<t<1$, so the particle is initially descending and then at $t=1$ it starts to ascend.

$$
\begin{aligned}
y(0) & =3 \\
y(1) & =1-3+3=1 \\
y(3) & =27-9+3=21
\end{aligned}
$$

The total distance traveled is $\underbrace{(3-1)}_{\text {down }}+\underbrace{(21-1)}_{\text {up }}=22$.
4. State the product rule for the derivative of a pair of differentiable functions f and g using your favorite notation. Then use the DEFINITION of the derivative to prove the product rule. Briefly justify your reasoning at each step.
If f and g are both differentiable functions of x, then:

$$
\begin{aligned}
& (f \cdot g)^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x) . \\
(f \cdot g)^{\prime}(x)= & \lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x)}{h} \\
= & \lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x+h)+f(x) g(x+h)-f(x) g(x)}{h} \\
= & \lim _{h \rightarrow 0}\left(\frac{f(x+h) g(x+h)-f(x) g(x+h)}{h}+\frac{f(x) g(x+h)-f(x) g(x)}{h}\right) \\
= & \lim _{h \rightarrow 0}\left(\frac{f(x+h)-f(x)}{h} g(x+h)+f(x) \frac{g(x+h)-g(x)}{h}\right)
\end{aligned}
$$

Because f and g are differentiable they must be continuous, so $\lim _{h \rightarrow 0} g(x+h)=$ $g(x)$. Therefore:

$$
\begin{aligned}
(f \cdot g)^{\prime}(x) & =\lim h \rightarrow 0\left(\frac{f(x+h)-f(x)}{h} g(x+h)+f(x) \frac{g(x+h)-g(x)}{h}\right) \\
& =f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
\end{aligned}
$$

5. Does there exist a set of real numbers a, b and c for which the function

$$
f(x)= \begin{cases}\tan ^{-1}(x) & x \leq 0 \\ a x^{2}+b x+c, & 0<x<2 \\ x^{3}-\frac{1}{4} x^{2}+5, & x \geq 2\end{cases}
$$

is differentiable (i.e. everywhere differentiable)? Explain why or why not. (Here $\tan ^{-1}(x)$ denotes the inverse of the tangent function.)

We start by finding the constraints on a, b and c under which the function is continuous:

$$
\tan ^{-1}(0)=0 \Rightarrow c=0
$$

At $x=2$:

$$
2^{3}-\frac{1}{4} 2^{2}+5=8-1+5=12
$$

Therefore $a \cdot 2^{2}+b \cdot 2+c=12, \Rightarrow 4 a+2 b=12, \Rightarrow b=6-2 a$.
Next we find the conditions that ensure differentiability at $x=0$ and $x=2$.

$$
\left.f^{\prime}(x)\right|_{x=2}=\left[3 x^{2}-\frac{1}{2} x\right]_{x=2}=3 \cdot 4-\frac{1}{2} \cdot 2=11 .
$$

So we want: $[2 a x+b]_{x=2}=4 a+b=11$.
In order for the function to be continuous we must have $b=6-2 a$, so if f is both differentiable and continuous $4 a+(6-2 a)=11 \Rightarrow a=5 / 2, b=1$.
If f is differentiable then $a=5 / 2, b=1$ and $c=0$. We must check that under these conditions, f is differentiable at $x=0$.
At $x=0$ the derivative of $\frac{5}{2} x^{2}+x$ is $5 \cdot 0+1=1$.
If we have forgotten that the derivative of $\tan ^{-1}(x)$ is $\frac{1}{1+x^{2}}$ then we must apply implicit differentiation to the function $\tan y=x$ to re-derive this fact, as presented in lecture. At $x=0$ the derivative of $\tan ^{-1}(x)$ is $\frac{1}{1+0}=1$.
We conclude that when $a=5 / 2, b=1$ and $c=0$, the function $f(x)$ defined above is differentiable.
6. Suppose that f satisfies the equation $f(x+y)=f(x)+f(y)+x^{2} y+x y^{2}$ for all real numbers x and y. Suppose further that

$$
\lim _{x \rightarrow 0} \frac{f(x)}{x}=1
$$

(a) Find $f(0)$.

Since $\lim _{x \rightarrow 0} \frac{f(x)}{x}=1, f(x) \rightarrow 0$ as $x \rightarrow 0$, so $f(0)=0$.
(b) Find $f^{\prime}(0)$.

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{f(h)}{h}=1 .
$$

(c) Find $f^{\prime}(x)$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x)+f(h)+x^{2} h+x h^{2}-f(x)}{h} \\
& =\lim _{h \rightarrow 0}\left(\frac{f(h)}{h}+x^{2}+x h\right) \\
& =1+x^{2}+0 \\
& =x^{2}+1
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

