Chain Rule

The product rule tells us how to find the derivative of a product of functions like $f(x) \cdot g(x)$. The composition or "chain" rule tells us how to find the derivative of a composition of functions like $f(g(x))$. Composition of functions is about substitution - you substitute a value for x into the formula for g, then you substitute the result into the formula for f. An example of a composition of two functions is $y=(\sin t)^{10}$ (which is usually written as $y=\sin ^{10} t$).

Figure 1: Composition of functions: $(f \circ g)(x)=f(g(x))$
One way to think about composition of functions is to use new variable names. For example, for the function $y=\sin ^{10} t$ we can say $x=\sin t$ and then $y=x^{10}$. Notice that if you plug $x=\sin t$ in to the formula for y you get back to $y=\sin ^{10} t$. It's good practice to introduce new variables when they're convenient, and this is one place where it's very convenient.

So, how do we find the derivative of a composition of functions? We're trying to find the slope of a tangent line; to do this we take a limit of slopes $\frac{\Delta y}{\Delta t}$ of secant lines. Here y is a function of x, x is a function of t, and we want to know how y changes with respect to the original variable t. Here again using that intermediate variable x is a big help:

$$
\frac{\Delta y}{\Delta t}=\frac{\Delta y}{\Delta x} \cdot \frac{\Delta x}{\Delta t}
$$

because when we perform the multiplication, the small change Δx cancels.
The derivative of y with respect to t is $\lim _{\Delta t \rightarrow 0} \frac{\Delta y}{\Delta t}$; what happens when Δt gets small? Because $x=\sin t$ is a continuous function, as Δt approaches $0, \Delta x$ also approaches zero. It turns out that:

$$
\lim _{\Delta t \rightarrow 0} \frac{\Delta y}{\Delta t}=\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t} \quad \longleftarrow \text { The Chain Rule! }
$$

The derivative of a composition of functions is a product. In the example $y=(\sin t)^{10}$, we have the "inside function" $x=\sin t$ and the "outside function" $y=x^{10}$. The chain rule tells us to take the derivative of y with respect to x and multiply it by the derivative of x with respect to t.

The derivative of $y=x^{10}$ is $\frac{d y}{d x}=10 x^{9}$. The derivative of $x=\sin t$ is $\frac{d x}{d t}=\cos t$. The chain rule tells us that $\frac{d}{d t} \sin ^{10} t=10 x^{9} \cdot \cos t$. This is correct,
but if a friend asked you for the derivative of $\sin ^{10} t$ and you answered $10 x^{9} \cdot \cos t$ your friend wouldn't know what x stood for. The last step in this process is to rewrite x in terms of t :

$$
\frac{d}{d t} \sin ^{10} t=10(\sin t)^{9} \cdot \cos t=10 \sin ^{9} t \cdot \cos t
$$

Here is another way of writing the chain rule:

$$
\frac{d}{d x}(f \circ g)(x)=\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x) .
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

