Example: $\sin (10 t)$
The chain rule (composition rule) says that $\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}$. In other words, the derivative of the composition of functions $f(g(t))$ is the derivative of the outside function $f(x)$ times the derivative of the inside function $g(t)$.

For the example $\frac{d}{d t} \sin (10 t)$, the inside function is $x=10 t$ and the outside function is $y=\sin x$. Using the rules we know, we can compute that $\frac{d y}{d x}=\cos x$ and $\frac{d x}{d t}=10$, so:

$$
\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}=\cos x \cdot 10 .
$$

Since we're the only ones who know the value of x in this formula, we replace x by $10 t$ to get:

$$
\frac{d y}{d t}=\cos (10 t) \cdot 10=10 \cos (10 t) .
$$

Once you've had more practice using the chain rule, you won't always need the variable x that represents the inside function. When you look at $\frac{d}{d t} \sin (10 t)$ you might say to yourself: "The derivative of the outside function, sine, is cosine. I'm plugging $10 t$ into it. And the derivative of $10 t$ is just 10 . So $\frac{d}{d t} \sin (10 t)=\cos (10 t) \cdot 10$.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

