Higher Derivatives

Higher derivatives are derivatives of derivatives. Given a differentiable function $u=u(x)$ its derivative u^{\prime} is a new function, which we may be able to differentiate again to get $\left(u^{\prime}\right)^{\prime}=u^{\prime \prime}$.

For example, if $u(x)=\sin x$ then $u^{\prime}=\cos x$ and $u^{\prime \prime}=-\sin x$. We can go on: $\left(u^{\prime \prime}\right)^{\prime}=u^{\prime \prime \prime}=-\cos x\left(u^{\prime \prime \prime}=u^{(3)}\right.$ is called the third derivative of u and $u^{\prime \prime}$ is the second derivative) and $u^{\prime \prime \prime \prime}=u^{(4)}=\sin x$. The function $\sin x$ is a special example - we won't usually "come back to" the function we started with.

Since there's more than one way to write derivatives, there's more than one notation for higher derivatives.

Notations

$f^{\prime}(x)$	$D f$	$\frac{d f}{d x}$	$\frac{d}{d x} f$
$f^{\prime \prime}(x)$	$D^{2} f$	$\frac{d^{2} f}{d x^{2}}$	$\left(\frac{d}{d x}\right)^{2} f$
$f^{\prime \prime \prime}(x)$	$D^{3} f$	$\frac{d^{3} f}{d x^{3}}$	$\left(\frac{d}{d x}\right)^{3} f$
$f^{(n)}(x)$	$D^{n} f$	$\frac{d^{n} f}{d x^{n}}$	$\left(\frac{d}{d x}\right)^{4} f$

The symbols D and $\frac{d}{d x}$ represent "operators" which can be applied to a function. When you apply one of these operators to a function you get the derivative of that function.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

