Example: $D^{n} x^{n}$
Let's calculate the $n^{\text {th }}$ derivative of x^{n}

$$
D^{n} x^{n}=? \quad(n=1,2,3, \ldots)
$$

Let's start small and look for a pattern:

$$
\begin{aligned}
D x^{n} & =n x^{n-1} \\
D^{2} x^{n} & =n(n-1) x^{n-2} \\
D^{3} x^{n} & =n(n-1)(n-2) x^{n-3} \\
& \vdots \\
D^{n-1} x^{n} & =(n(n-1)(n-2) \cdots 2) x^{1}
\end{aligned}
$$

We can guess this $(n-1)^{s t}$ derivative from the pattern established by the first three derivatives. The power of x decreases by 1 at every step, so the power of x on the $(n-1)^{\text {st }}$ step will be 1 . At each step we multiply the derivative by the power of x from the previous step, so at the $(n-1)^{s t}$ step we'll be multiplying by the previous power 2 of x.

Differentiating one more time we get:

$$
D^{n} x^{n}=(n(n-1)(n-2) \cdots 2 \cdot 1) 1
$$

The number $(n(n-1)(n-2) \cdots 2 \cdot 1)$ is written n ! and is called " n factorial". What we've just seen forms the basis of a proof by mathematical induction that $D^{n} x^{n}=n!$. So $D^{n} x^{n}$ is a constant!

The final question for the lecture is: what is $D^{n+1} x^{n}$?
Answer: It's the derivative of a constant, so it's 0 .

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

