Rates of Change

Last class we talked about the derivative as the slope of the tangent line to a graph. This class we'll continue our discussion of derivatives by explaining how a derivative can be a rate of change. This some of the most important information presented in this class.

Remember that when we talked about the slope of a graph $y=f(x)$ we started by talking about the change in y and the change in x. If changing x at a certain rate causes y to change, we're interested in the relative rate of change, $\frac{\Delta y}{\Delta x}$.

Figure 1: Graph of a generic function, with Δx and Δy marked on the graph
Another way to think about $\frac{\Delta y}{\Delta x}$ is as the average change in y over an interval of size Δx. This comes up frequently in physics, in which x is measuring time and $\frac{\Delta y}{\Delta x}$ is the average change in position over an interval of time - in other words, it's the rate at which something is moving. In this case, the limit

$$
\frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}
$$

measures the instantaneous rate of change, or the speed.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

