Limits

Last class we talked about a series of secant lines approaching the "limit" of a tangent line, and about how as Δx approaches zero, $\frac{\Delta y}{\Delta x}$ approaches the "limit" $y^{\prime}=\frac{d y}{d x}$. Now we want to talk about limits more carefully; this will include some of our first steps towards our goal of being able to differentiate every function you know.

Some limits are easy to compute:

$$
\lim _{x \rightarrow 3} \frac{x^{2}+x}{x+1}=\frac{3^{2}+3}{3+1}=\frac{12}{4}=3
$$

With an easy limit, you can get a meaningful answer just by plugging in the limiting value. This is because when x is close to 3 , the value of the function $f(x)=\frac{x^{2}+x}{x+1}$ is close to $f(3)$.

Some limits are not easy to compute. For example, the definition of the derivative:

$$
\lim _{x \rightarrow x_{0}} \frac{\Delta f}{\Delta x}=\lim _{x \rightarrow x_{0}} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}
$$

is never an easy limit, because the denominator $\Delta x=0$ is not allowed. (The limit $x \rightarrow x_{0}$ is computed under the implicit assumption that $x \neq x_{0}$.) We'll always need to cancel Δx before we can make sense out of the limit.

Other "hard" limits would be:

$$
\lim _{x \rightarrow-1} \frac{x^{2}+x}{x+1} \quad \text { and } \quad \lim _{x \rightarrow \infty} \frac{x^{2}+x}{x+1}
$$

Any limit involving infinity or division by zero is going to be harder to compute; sometimes the answer will will be that there is no limit.

To complete our discussion of limits, we need just one more piece of notation - the concepts of left hand and right hand limits.

The limit

$$
\lim _{x \rightarrow x_{0}^{+}} f(x)
$$

is known as the right-hand limit and means that you should use values of x that are greater than x_{0} (to the right of x_{0} on the number line) to compute the limit. Shown below is the graph of the function:

$$
f(x)= \begin{cases}x+1 & x>0 \\ -x & x \leq 0\end{cases}
$$

The right-hand limit $\lim _{x \rightarrow 0^{+}} f(x)$ equals 1 .
The left-hand limit

$$
\lim _{x \rightarrow x_{0}^{-}} f(x)
$$

is found by looking at values of $f(x)$ when x is less than x_{0} (to the left of x_{0} on the number line). For this function, $\lim _{x \rightarrow 0^{-}} f(x)=0$.

Figure 1: Graph of $f(x)$

The notions of left- and right- hand limits will make things much easier for us as we discuss continuity, next.

Let's talk more about the example graphed above. To calculate

$$
\lim _{x \rightarrow x_{0}^{+}} f(x)
$$

we use only values of x that are greater than 0 . When $x>0, f(x)$ is defined to equal $x+1$. So we plugged $x=0$ into the expression $x+1$ to calculate the right-hand limit.

When calculating

$$
\lim _{x \rightarrow x_{0}^{-}} f(x)
$$

we have $x<0$. Here $f(x)$ is defined to equal $-x$; when we plug $x=0$ into this expression we get $\lim _{x \rightarrow x_{0}^{-}} f(x)=0$.

Notice that it doesn't matter that $f(0)=0$. Our calculations would have been exactly the same if $f(0)$ were 1 or even if $f(0)=2$.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

