Continuity

Continuous Functions

Definition: A function f is continuous at x_{0} if $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.
What is this definition saying? A function that's continuous at x_{0} has the following properties:

- $\lim _{x \rightarrow x_{0}^{+}} f(x)=\lim _{x \rightarrow x_{0}^{-}} f(x)$; in particular, both of these one sided limits exist.
- $f\left(x_{0}\right)$ is defined.
- $\lim _{x \rightarrow x_{0}^{+}} f(x)=\lim _{x \rightarrow x_{0}^{-}} f(x)=f\left(x_{0}\right)$.

This may look obvious, but remember that when you are calculating $\lim _{x \rightarrow x_{0}} f(x)$ you never allow x to equal x_{0}. The value $\lim _{x \rightarrow x_{0}} f(x)$ is computed independently of, and in a different way than, the value of $f\left(x_{0}\right)$. If we aren't careful to make this distinction, this definition has no meaning.

The limits for which $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$ are exactly the "easy limits" we discussed earlier. The "harder" limits only happen for functions that are not continuous.

Next we'll see a tour of different types of discontinuous functions. The question of whether something is continuous or not may seem fussy, but it is something people have worried about a lot. Bob Merton, who was a professor at MIT when he did his work for the Nobel Prize in Economics, was interested in whether stock prices of various kinds are continuous from the left (past) or right (future) in a certain model. That was a serious consideration when developing a model that hedge funds now use all the time.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

