Infinite Discontinuities

In an infinite discontinuity, the left- and right-hand limits are infinite; they may be both positive, both negative, or one positive and one negative.

Figure 1: An example of an infinite discontinuity: $\frac{1}{x}$
From Figure 1, we see that $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty$ and $\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty$. Saying that a limit is ∞ is different from saying that the limit doesn't exist - the values of $\frac{1}{x}$ are changing in a very definite way as $x \rightarrow 0$ from either side. (Note that it's not true that $\lim _{x \rightarrow 0} \frac{1}{x}=\infty$ because ∞ and $-\infty$ are different.)

There are two more things we can learn from this example. First, sketch the graph of $\frac{d}{d x} \frac{1}{x}=-\frac{1}{x^{2}}$; it also has an infinite discontinuity at $x=0$. Notice that the derivative of the function $\frac{1}{x}$ is always negative. It may seem strange to you that the derivative is decreasing as x approaches 0 from the positive side while $\frac{1}{x}$ is increasing, but very often the graph of the derivative will look nothing like the graph of the original function.

What the graph of the derivative $-\frac{1}{x^{2}}$ is showing you is the slope of the graph of $\frac{1}{x}$. Where the graph of $\frac{1}{x}$ is not very steep, the graph of $-\frac{1}{x^{2}}$ lies close to the x-axis. Where the graph of $\frac{1}{x}$ is steep, the graph of $-\frac{1}{x^{2}}$ is far away from the x-axis. The value of $-\frac{1}{x^{2}}$ is always negative, and the graph of $\frac{1}{x}$ always slopes downward.

Finally, $\frac{1}{x}$ is an odd function and $-\frac{1}{x^{2}}$ is an even function. When you take the derivative of an odd function you always get an even function and vice-versa. If you can easily identify odd and even functions, this is a good way to check

Figure 2: Top: graph of $f(x)=\frac{1}{x}$ and Bottom: graph of $f^{\prime}(x)=-\frac{1}{x^{2}}$
your work.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

