Derivative of a Sum

One of our examples of a general derivative formula was:

$$
(u+v)^{\prime}(x)=u^{\prime}(x)+v^{\prime}(x)
$$

(Remember that by $(u+v)(x)$ we mean $u(x)+v(x)$.)
In other words, the derivative of the sum of two functions is just the sum of their derivatives. We'll now prove that this is true for any pair of functions u and v, provided that those functions have derivatives. Since we don't know in advance what functions u and v are, we can't use any specific information about the functions or the slopes of their graphs; all we have to work with is the formal definition of the derivative.

When we apply the definition of the derivative to the function $(u+v)(x)$ we get:

$$
(u+v)^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{(u+v)(x+\Delta x)-(u+v)(x)}{\Delta x}
$$

Since $(u+v)(x)$ is just $u(x)+v(x)$,

$$
(u+v)^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{u(x+\Delta x)+v(x+\Delta x)-u(x)-v(x)}{\Delta x} .
$$

Combining like terms, we see that:

$$
(u+v)^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{u(x+\Delta x)-u(x)+v(x+\Delta x)-v(x)}{\Delta x}
$$

or:

$$
(u+v)^{\prime}(x)=\lim _{\Delta x \rightarrow 0}\left\{\frac{u(x+\Delta x)-u(x)}{\Delta x}+\frac{v(x+\Delta x)-v(x)}{\Delta x}\right\} .
$$

Because u and v are differentiable (and therefore continuous), the limit of the sum is the sum of the limits. Therefore:

$$
(u+v)^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{u(x+\Delta x)-u(x)}{\Delta x}+\lim _{\Delta x \rightarrow 0} \frac{v(x+\Delta x)-v(x)}{\Delta x} .
$$

The two limits above match the definition of the derivatives of u and v, so we've shown that $(u+v)^{\prime}(x)=u^{\prime}(x)+v^{\prime}(x)$.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

