$\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$
In order to compute specific formulas for the derivatives of $\sin (x)$ and $\cos (x)$, we needed to understand the behavior of $\sin (x) / x$ near $x=0$ (property B). In his lecture, Professor Jerison uses the definition of $\sin (\theta)$ as the y-coordinate of a point on the unit circle to prove that $\lim _{\theta \rightarrow 0}(\sin (\theta) / \theta)=1$.

We switch from using x to using θ because we want to start thinking about the sine function as describing a ratio of sides in the triangle shown in Figure 1. The variable we're interested in is an angle, not a horizontal position, so we discuss $\sin (\theta) / \theta$ rather than $\sin (x) / x$.

Figure 1: A circle of radius 1 with an arc of angle θ.
Our argument depends on the fact that when the radius of the circle shown in Figure 1 is $1, \theta$ is the length of the highlighted arc. This is true when the angle θ is described in radians but NOT when it is measured in degrees.

Also, since the radius of the circle is $1, \sin (\theta)=\frac{\mid \text { opposite } \mid}{\mid \text { hypotenuse } \mid}$ equals the length of the edge indicated (the hypotenuse has length 1).

In other words, $\sin (\theta) / \theta$ is the ratio of edge length to arc length. When $\theta=\pi / 2 \mathrm{rad}, \sin (\theta)=1$ and $\sin (\theta) / \theta=2 / \pi \cong 2 / 3$. When $\theta=\pi / 4 \mathrm{rad}$, $\sin (\theta)=\sqrt{2} / 2$ and $\sin (\theta) / \theta=2 \sqrt{2} / \pi \cong 9 / 10$. What will happen to the value of $\sin (\theta) / \theta$ as the value of θ gets closer and closer to 0 radians?

We see from Figure 2 that as θ shrinks, the length $\sin (\theta)$ of the segment gets closer and closer to the length θ of the curved arc. We conclude that as $\theta \rightarrow 0$,

Figure 2: The sector in Fig. 1 as θ becomes very small
$\frac{\sin \theta}{\theta} \rightarrow 1$. In other words,

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1 .
$$

This technique of comparing very short segments of curves to straight line segments is a powerful and important one in calculus; it is used several times in this lecture.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

