A geometric proof that the derivative of $\sin x$ is $\cos x$.

At the start of the lecture we saw an algebraic proof that the derivative of $\sin x$ is $\cos x$. While this proof was perfectly valid, it was somewhat abstract - it did not make use of the definition of the sine function.

The proof that $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$ did use the unit circle definition of the sine of an angle. It also showed that when $x=0$ the derivative of $\sin x$ is 1 :

$$
\begin{aligned}
\left.\frac{d}{d x} \sin x\right|_{x=0} & =\lim _{\Delta x \rightarrow 0} \frac{\sin (0+\Delta x)-\sin 0}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\sin \Delta x-0}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\sin \Delta x}{\Delta x} \\
& =1
\end{aligned}
$$

We'll now prove that the derivative of $\sin \theta$ is $\cos \theta$ directly from the definition of the sine function as the ratio $\frac{\mid \text { opposite } \mid}{\text { |hypotenuse| }}$ of the side lengths of a right triangle.

Figure 1: Point P has vertical position $\sin \theta$.
We start with a point P on the unit circle centered at O and the angle θ associated with P. As indicated in Figure 1, $\sin \theta$ is the vertical distance between P and the x-axis. Next, we add a small amount $\Delta \theta$ to angle θ; let Q be the point on the unit circle at angle $\theta+\Delta \theta$. The y-coordinate of Q is $\sin (\theta+\Delta \theta)$. To find the rate of change of $\sin \theta$ with respect to θ we just need to find the rate of change of $y=\sin \theta$.

Figure 2: When $\Delta \theta$ is small, $\overparen{P Q} \approx \overline{P Q}$. Find $\frac{d y}{d \theta}$.

As shown in Figure 2, $\Delta y=|P R|$ and segment $P Q$ is a straight line approximation of the circular arc $P Q$. If $\Delta \theta$ is small enough, segment $P Q$ and $\operatorname{arc} P Q$ are practically the same, so $|P Q| \approx \Delta \theta$.

We're trying to find Δy. Since we know the length of the hypotenuse $P Q$, all we need is the measure of $\angle Q P R$ to solve for $\Delta y=|P R|$.

Since $\Delta \theta$ is small, segment $P Q$ is (nearly) tangent to the circle, and so angle $\angle O P Q$ is (nearly) a right angle. We know that $P R$ is vertical, we know that θ is the angle $O P$ makes with the horizontal, and we can combine these facts to prove that $\angle R P Q$ and θ are (nearly) congruent angles. ${ }^{1}$

The arc length $\Delta \theta$ is approximately equal to the length $|P R|$ of the hypotenuse and angle $R P Q$ is approximately equal to θ. By the definition of the cosine function we get $\cos \theta \approx \frac{|P R|}{\Delta \theta}$. But $|P R|$ is just the vertical distance between Q and P, which is just the difference between $\sin (\theta+\Delta \theta)$ and $\sin \theta$. In other words, when $\Delta \theta$ is very small,

$$
\cos \theta \approx \frac{\sin (\theta+\Delta \theta)-\sin \theta}{\Delta \theta}
$$

As $\Delta \theta$ approaches 0 , segment $Q P$ gets closer and closer to $\operatorname{arc} Q P$ and angle $Q P O$ gets closer and closer to a right angle, so the value of $\frac{(\sin (\theta+\Delta \theta)-\sin \theta)}{\Delta \theta}$ gets closer and closer to $\cos \theta$. We conclude that:

$$
\lim _{\Delta \theta \rightarrow 0} \frac{\sin (\theta+\Delta \theta)-\sin \theta}{\Delta \theta}=\cos \theta
$$

and thus that the derivative of $\sin \theta$ is $\cos \theta$.

[^0]MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ Professor Jerison does this by rotating and translating angle θ to coincide with angle $R P Q$. Another way to see this is to extend segment $R P$ until it intersects the horizontal line through O at point S, then note that $m \angle R P Q+m \angle Q P O+m \angle O P S=\pi$ and also $\theta+m \angle P S O+m \angle O P S=\pi$. Since $m \angle Q P O \cong m \angle P S O$, we get $m \angle R P Q \cong \theta$. (If $\theta>\pi / 2$ a different, but similar, argument applies.)

