Introduction to General Rules for Differentiation

We've now seen several specific rules for differentiation; for example, x^{n} is $n x^{n-1}$. We've even seen a few examples using this formula. We've also seen some general rules for extending these calculations. For instance, $(c u)^{\prime}=c \cdot u^{\prime}$ and $(u+v)^{\prime}=u^{\prime}+v^{\prime}$.

Today we'll learn more general rules; how to differentiate a product of functions, a quotient of functions, and best of all a composition of functions. At the end we'll learn something about higher derivatives.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

