Product formula (General)

The product rule tells us how to take the derivative of the product of two functions:

$$
(u v)^{\prime}=u^{\prime} v+u v^{\prime}
$$

This seems odd - that the product of the derivatives is a sum, rather than just a product of derivatives - but in a minute we'll see why this happens.

First, we'll use this rule to take the derivative of the product $x^{n} \sin x-\mathrm{a}$ function we would not be able to differentiate without this rule. Here the first function, u is x^{n} and the second function v is $\sin x$. According to the specific rule for the derivative of x^{n}, the derivative u^{\prime} must be $n x^{n-1}$. If $v=\sin x$ then $v^{\prime}=\cos x$. The product rule tells us that $(u v)^{\prime}=u^{\prime} v+u v^{\prime}$, so

$$
\frac{d}{d x} x^{n} \sin x=n x^{n-1} \sin x+x^{n} \cos x
$$

By applying this rule repeatedly, we can find derivatives of more complicated products:

$$
\begin{aligned}
(u v w)^{\prime} & =u^{\prime}(v w)+u(v w)^{\prime} \\
& =u^{\prime} v w+u\left(v^{\prime} w+v w^{\prime}\right) \\
& =u^{\prime} v w+u v^{\prime} w+u v w^{\prime} .
\end{aligned}
$$

Now let's see why this is true:

$$
\begin{aligned}
(u v)^{\prime} & =\lim _{\Delta x \rightarrow 0} \frac{(u v)(x+\Delta x)-(u v)(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{u(x+\Delta x) v(x+\Delta x)-u(x) v(x)}{\Delta x}
\end{aligned}
$$

We want our final formula to appear in terms of u, v, u^{\prime} and v^{\prime}. We know that $u^{\prime}=\lim _{\Delta x \rightarrow 0} \frac{u(x+\Delta x)-u(x)}{\Delta x}$, and we see that $u(x+\Delta x) v(x+\Delta x)-u(x) v(x)$ looks a little bit like $(u(x+\Delta x)-u(x)) v(x)$. By using a little bit of algebra we can get $(u(x+\Delta x)-u(x)) v(x)$ to appear in our formula; this process is described below.

First, notice that:

$$
u(x+\Delta x) v(x)-u(x+\Delta x) v(x)=0 .
$$

Adding zero to the numerator doesn't change the value of our expression, so:

$$
(u v)^{\prime}=\lim _{\Delta x \rightarrow 0} \frac{u(x+\Delta x) v(x)-u(x) v(x)+u(x+\Delta x) v(x+\Delta x)-u(x+\Delta x) v(x)}{\Delta x} .
$$

We then re-arrange that expression to get:

$$
(u v)^{\prime}=\lim _{\Delta x \rightarrow 0}\left[\left(\frac{u(x+\Delta x)-u(x)}{\Delta x}\right) v(x)+u(x+\Delta x)\left(\frac{v(x+\Delta x)-v(x)}{\Delta x}\right)\right]
$$

We proved that if u and v are differentiable they must be continuous, so the limit of the sum is the sum of the limits:

$$
\left[\lim _{\Delta x \rightarrow 0} \frac{u(x+\Delta x)-u(x)}{\Delta x}\right] v(x)+\lim _{\Delta x \rightarrow 0}\left(u(x+\Delta x)\left[\frac{v(x+\Delta x)-v(x)}{\Delta x}\right]\right)
$$

or in other words,

$$
(u v)^{\prime}=u^{\prime}(x) v(x)+u(x) v^{\prime}(x)
$$

Note: we also used the fact that:

$$
\lim _{\Delta x \rightarrow 0} u(x+\Delta x)=u(x)
$$

which is true because u is differentiable and therefore continuous.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

