Implicit Differentiation (Rational Exponent Rule)

We know that if n is an integer then the derivative of $y=x^{n}$ is $n x^{n-1}$. Does this formula still work if n is not an integer? I.e. is it true that:

$$
\frac{d}{d x}\left(x^{a}\right)=a x^{a-1} .
$$

We proved this formula using the definition of the derivative and the binomial theorem for $a=1,2, \ldots$. From this, we also got the formula for $a=-1,-2, \ldots$. Now we'll extend this formula to cover rational numbers $a=\frac{m}{n}$ as well. In particular, this will let us take the derivative of $y=\sqrt[n]{x}=x^{1 / n}$.

Suppose $y=x^{\frac{m}{n}}$, where m and n are integers. We want to compute $\frac{d y}{d x}$. None of the rules we've learned so far seem helpful here, and if we use the definition of the derivative we'll get stuck trying to simplify $(x-\Delta x)^{m / n}$. We need a new idea.

The thing that's keeping us from using the definition of the derivative is that the denominator of n in the exponent forces us to take the $n^{t h}$ root of x. We could solve this problem by raising both sides of the equation to the $n^{\text {th }}$ power:

$$
\begin{aligned}
y & =x^{\frac{m}{n}} \\
y^{n} & =\left(x^{\frac{m}{n}}\right)^{n} \\
y^{n} & =x^{\frac{m}{n} \cdot n} \\
y^{n} & =x^{m}
\end{aligned}
$$

What happens if we try to take the derivative now by applying the operator $\frac{d}{d x}$? We have a rule for finding the derivative of a variable raised to an integer power; we can use this rule on both sides of the equation $y^{n}=x^{m}$.

$$
\begin{aligned}
y^{n} & =x^{m} \\
\frac{d}{d x} y^{n} & =\frac{d}{d x} x^{m}
\end{aligned}
$$

How do we compute $\frac{d}{d x} y^{n}$? We know that y is a function of x, so we can apply the chain rule with outside function y^{n} and inside function y. Suppose $u=y^{n}$. Then the chain rule tells us:

$$
\frac{d u}{d x}=\frac{d u}{d y} \frac{d y}{d x}
$$

So

$$
\frac{d}{d x} y^{n}=\left(\frac{d}{d y} y^{n}\right) \frac{d y}{d x}=n y^{n-1} \frac{d y}{d x}
$$

On the right hand side of the equation we have $\frac{d}{d x} x^{m}=m x^{m-1}$, so we end up with:

$$
\begin{aligned}
& \frac{d}{d x} y^{n}=\frac{d}{d x} x^{m} \\
& n y^{n-1} \frac{d y}{d x}=m x^{m-1}
\end{aligned}
$$

We're left with only one unknown quantity in this equation - $\frac{d y}{d x}-$ which is exactly what we're trying to find. Can we solve for $\frac{d y}{d x}$ and use this to find the derivative of $y=x^{m / n}$? We can, but we need to use a lot of algebra to do it.

By dividing both sides by $n y^{n-1}$ we get:

$$
\frac{d y}{d x}=\frac{m}{n} \frac{x^{m-1}}{y^{n-1}}
$$

This looks promising but we want our answer in terms of x, without any y 's mixed in. To get rid of the y we can now substitute $x^{m / n}$ for y. (We couldn't have done this before taking the derivative because we don't know how to take the derivative of $x^{m / n}$ - that's the whole point!)

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{m}{n}\left(\frac{x^{m-1}}{y^{n-1}}\right) \\
& =\frac{m}{n}\left(\frac{x^{m-1}}{\left(x^{m / n}\right)^{(n-1)}}\right) \\
& =\frac{m}{n}\left(\frac{x^{m-1}}{x^{(m / n) \cdot(n-1)}}\right) \\
& =\frac{m}{n} \frac{x^{m-1}}{x^{m(n-1) / n}} \\
& =\frac{m}{n} x^{\left((m-1)-\frac{m(n-1)}{n}\right)} \\
& =\frac{m}{n} x^{\frac{n(m-1)}{n}-\frac{m(n-1)}{n}} \\
& =\frac{m}{n} x^{\frac{n(m-1)-m(n-1)}{n}} \\
& =\frac{m}{n} x^{\frac{n m-n-n m+m}{n}} \\
& =\frac{m}{n} x^{\frac{m-n}{n}} \\
& =\frac{m}{n} x^{\left(\frac{m}{n}-\frac{n}{n}\right)} \\
\text { So, } \frac{d y}{d x} & =\frac{m}{n} x^{\left(\frac{m}{n}-1\right)}
\end{aligned}
$$

This is the answer we were hoping to get! We now know that for any rational number a, the derivative of x^{a} is $a x^{a-1}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus []

Fall 2010 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

