Implicit Differentiation Example

How would we find $y^{\prime}=\frac{d y}{d x}$ if $y^{4}+x y^{2}-2=0$?
We could use a trick to solve this explicitly - think of the above equation as a quadratic equation in the variable y^{2} then apply the quadratic formula:

$$
\begin{aligned}
y^{2} & =\frac{-x \pm \sqrt{x^{2}+8}}{2} \\
& \text { so } \\
y & = \pm \sqrt{\frac{-x \pm \sqrt{x^{2}+8}}{2}}
\end{aligned}
$$

Since we see \pm twice in this equation, there are four possible branches to consider. This means that to be thorough we'd want to compute four different derivatives. This is a lot of work.

Instead, we can compute $\frac{d y}{d x}$ using implicit differentiation. As always, we start by applying $\frac{d}{d x}$ to both sides:

$$
\begin{aligned}
\frac{d}{d x}\left(y^{4}+x y^{2}-2\right) & =\frac{d}{d x} 0 \\
\frac{d}{d x}\left(y^{4}\right)+\frac{d}{d x}\left(x y^{2}\right)-\frac{d}{d x} 2 & =0 \\
4 y^{3} \frac{d y}{d x}+\left(y^{2}+x \cdot 2 y \frac{d y}{d x}\right)-0 & =0 \\
4 y^{3} \frac{d y}{d x}+2 x y \frac{d y}{d x} & =-y^{2} \\
\left(4 y^{3}+2 x y\right) \frac{d y}{d x} & =-y^{2} \\
\frac{d y}{d x} & =\frac{-y^{2}}{4 y^{3}+2 x y}
\end{aligned}
$$

In lecture Professor Jerison used the shorthand y^{\prime} for the derivative; here we use $\frac{d y}{d x}$ to make it clear that we are differentiating with respect to x.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

