Implicit Differentiation and the Chain Rule

The chain rule tells us that:

$$
\frac{d}{d x}(f \circ g)=\frac{d f}{d g} \frac{d g}{d x} .
$$

While implicitly differentiating an expression like $x+y^{2}$ we use the chain rule as follows:

$$
\frac{d}{d x}\left(y^{2}\right)=\frac{d\left(y^{2}\right)}{d y} \frac{d y}{d x}=2 y y^{\prime}
$$

Why can we treat y as a function of x in this way?

Figure 1: The hyperbola $y^{2}-x^{2}=1$.
Consider the equation $y^{2}-x^{2}=1$, which describes the hyperbola shown in Figure 1. We cannot write y as a function of x, but if we start with a point (x, y) on the graph and then change its x coordinate by sliding the point along the graph its y coordinate will be constrained to change as well. The change in y is implied by the change in x and the constraint $y^{2}-x^{2}=1$. Thus, it makes sense to think about $y^{\prime}=\frac{d y}{d x}$, the rate of change of y with respect to x.

Given that $y^{2}-x^{2}=1$:
a) Use implicit differentiation to find y^{\prime}.
b) Check your work by using Figure 1 to estimate the slope of the tangent line to the hyperbola when $y=-1$ and when $x=1$.
c) Check your work for $y>0$ by solving for y and using the direct method to take the derivative.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

