Working with exponents

We start out with "base" number a. This number a must be positive, and we're going to assume $a>1$ to make it easier to draw graphs.

What is the derivative of a^{x} ? We'll start to answer this question by reviewing what we know about exponents.

To begin with, we know that:

$$
a^{0}=1 ; \quad a^{1}=a ; \quad a^{2}=a \cdot a ; \quad a^{3}=a \cdot a \cdot a \quad \ldots
$$

In general,

$$
a^{x_{1}+x_{2}}=a^{x_{1}} a^{x_{2}}
$$

Together with the first two properties, this describes the exponential function a^{x}.

From these properties, we can derive:

$$
\left(a^{x_{1}}\right)^{x_{2}}=a^{x_{1} x_{2}}
$$

and we can easily evaluate a^{n} for any positive integer n. For negative integers, we can see from the fact that $a^{m} \cdot a^{-m}=a^{m-m}=1$ that $a^{-m}=\frac{1}{a^{m}}$.

We want to be able to evaluate a^{x} for any number x; not just for integers. We start by defining a^{x} for rational values of x :

$$
a^{\frac{p}{q}}=\sqrt[q]{a^{p}} \quad \text { (where } p \text { and } q \text { are integers.) }
$$

Since $a^{1 / 2} \cdot a^{1 / 2}=a^{1}=\sqrt{a} \cdot \sqrt{a}$, this seems like a reasonable definition.
All that's left is to define a^{x} for irrational numbers; we do this by "filling in" the gaps in the function to make it continuous. This is what your calculator does when you ask it for the value of $3^{\sqrt{2}}$ or 2^{π}. It can't give you an exact answer, so it gives you a decimal (rational) number very close to the exact answer.

Take some time and sketch the graph of 2^{x} to "get a feel" for how exponential functions work.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

