a^{x} and the Definition of the Derivative

Our goal is to calculate the derivative $\frac{d}{d x} a^{x}$. It's going to take us a while. We start by writing down the definition of the derivative

$$
\frac{d}{d x} a^{x}=\lim _{\Delta x \rightarrow 0} \frac{a^{x+\Delta x}-a^{x}}{\Delta x}
$$

We can use the rule $a^{x_{1}+x_{2}}=a^{x_{1}} a^{x_{2}}$ to factor out a^{x} :

$$
\begin{aligned}
\frac{d}{d x} a^{x} & =\lim _{\Delta x \rightarrow 0} \frac{a^{x+\Delta x}-a^{x}}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{a^{x} a^{\Delta x}-a^{x}}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} a^{x} \frac{a^{\Delta x}-1}{\Delta x}
\end{aligned}
$$

As we're taking this limit, we're holding a and x fixed while Δx changes (approaches zero). This means that for the purposes of taking this limit, a^{x} is a constant. We can therefore factor the constant multiple out of the limit to get:

$$
\frac{d}{d x} a^{x}=a^{x} \lim _{\Delta x \rightarrow 0} \frac{a^{\Delta x}-1}{\Delta x}
$$

We've made a good start at finding the derivative of a^{x}; let's look at what we have so far. We can see from our calculations that $\frac{d}{d x} a^{x}$ is a^{x} times some multiple whose value we don't yet know. Let's call that multiple $M(a)$:

$$
M(a)=\lim _{\Delta x \rightarrow 0} \frac{a^{\Delta x}-1}{\Delta x} .
$$

Using this definition of $M(a)$, we can say that $\frac{d}{d x} a^{x}=M(a) a^{x}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

