Definition of e

Recall that:

$$
M(a)=\lim _{\Delta x \rightarrow 0} \frac{a^{\Delta x}-1}{\Delta x} .
$$

is the value for which $\frac{d}{d x} a^{x}=M(a) a^{x}$, the value of the derivative of a^{x} when $x=0$, and the slope of the graph of $y=a^{x}$ at $x=0$. We need to know what $M(a)$ is in order to find out what the derivative of a^{x} is. It turns out that the easiest way to understand $M(a)$ is to give up trying to calculate it and to define e as the number such that $M(e)=1$.

Leaving aside the question of whether such a number e exists, let's discuss what such a number would do for us. Since $M(e)=1$,

$$
\frac{d}{d x} e^{x}=e^{x} .
$$

This is an incredibly important formula and is the only thing we've said so far this lecture that you need to memorize. Also, the slope of the tangent line to $y=e^{x}$ at $x=0$ has slope 1 . You can confirm this by plugging $x=0$ into $\frac{d}{d x} e^{x}=e^{x}$.

But we still don't know what e is, or even if there is such a number. How do we know that there is any number a for which the slope of the tangent line to $y=a^{x}$ is 1 when $x=0$?

First notice that as the base a increases, the graph of $y=a^{x}$ gets steeper. Is the slope ever 1 ?

If $a=1, a^{x}=1$ for all x and the slope of the tangent line to the (very simple) graph at $x=0$ is 0 . Although we may not be able to compute the slope exactly, we can use secant lines to estimate the slope $M(a)$ for $a=2$ and $a=4$ geometrically. Look at the graph of 2^{x} in Fig. 1. The secant line from $(0,1)$ to $(1,2)$ of the graph $y=2^{x}$ has slope 1 . We can see from the picture that the slope of $y=2^{x}$ at $x=0$ is less than the slope of this secant line: $M(2)<1$ (see Fig. 1).

Next, look at the graph of 4^{x} in Fig. 2. The secant line from $\left(-\frac{1}{2}, \frac{1}{2}\right)$ to $(1,0)$ on the graph of $y=4^{x}$ has slope 1 . We see that the slope of $y=4^{x}$ at $x=0$ is greater than the slope of the secant, so $M(4)>1$ (see Fig. 2).

Assuming our function M is continuous, we conclude that somewhere in between 2 and 4 there is a base whose slope at $x=0$ is 1 .

Thus we can define e to be the unique number such that

$$
M(e)=1
$$

or, to put it another way,

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

or, to put it yet another way,

$$
\frac{d}{d x}\left(e^{x}\right)=1 \quad \text { at } x=0
$$

Figure 1: Slope $M(2)<1$

Another way to convince ourselves that e must exist is to start with the graph of $f(x)=2^{x}$ (recalling that $M(2)<1$) and think about the function $f(k x)=2^{k x}$. As k increases, the graph of $y=f(k x)$ is compressed horizontally and the slope of the tangent line to the graph of $y=f(x)$ continuously grows steeper. So, for some value of k between 1 and 2 , the slope of that tangent line must be 1 . So e exists and is between $2^{1}=2$ and $2^{2}=4$.

Figure 2: Slope $M(4)>1$

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

