Natural log (inverse function of e^{x})

Recall that:

$$
M(a)=\lim _{\Delta x \rightarrow 0} \frac{a^{\Delta x}-1}{\Delta x}
$$

is the value for which $\frac{d}{d x} a^{x}=M(a) a^{x}$, the value of the derivative of a^{x} when $x=0$, and the slope of the graph of $y=a^{x}$ at $x=0$. To understand $M(a)$ better, we study the natural \log function $\ln (x)$, which is the inverse of the function e^{x}. This function is defined as follows:

$$
\text { If } y=e^{x}, \text { then } \ln (y)=x
$$

or

$$
\text { If } w=\ln (x), \text { then } e^{w}=x
$$

Before we go any further, let's review some properties of this function:

$$
\begin{gathered}
\ln \left(x_{1} x_{2}\right)=\ln x_{1}+\ln x_{2} \\
\ln 1=0 \\
\ln e=1
\end{gathered}
$$

These can be derived from the definition of $\ln x$ as the inverse of the function e^{x}, the definition of e, and the rules of exponents we reviewed at the start of lecture.

We can also figure out what the graph of $\ln x$ must look like. We know roughly what the graph of e^{x} looks like, and the graph of $\ln x$ is just the reflection of that graph across the line $y=x$. Try sketching the graph of $\ln x$ yourself.

You should notice the following important facts about the graph of $\ln x$. Since e^{x} is always positive, the domain (set of possible inputs) of $\ln x$ includes only the positive numbers. The entire graph of $\ln x$ lies to the right of the y-axis. Since $e^{0}=1, \ln 1=0$ and the graph of $\ln x$ goes through the point $(1,0)$. And finally, since the slope of the tangent line to $y=e^{x}$ is 1 where the graph crosses the y-axis, the slope of the graph of $y=\ln x$ must be $1 / 1=1$ where the graph crosses the x-axis.

We know that $\frac{d}{d x} e^{x}=e^{x}$. To find $\frac{d}{d x} \ln x$ we'll use implicit differentiation as we did in previous lectures.

We start with $w=\ln (x)$ and compute $\frac{d w}{d x}=\frac{d}{d x} \ln x$. We don't have a good way to do this directly, but since $w=\ln (x)$, we know $e^{w}=e^{\ln (x)}=x$. We now use implicit differentiation to take the derivative of both sides of this equation.

$$
\begin{aligned}
\frac{d}{d x}\left(e^{w}\right) & =\frac{d}{d x}(x) \\
\frac{d}{d w}\left(e^{w}\right) \frac{d w}{d x} & =1
\end{aligned}
$$

$$
\begin{aligned}
e^{w} \frac{d w}{d x} & =1 \\
\frac{d w}{d x} & =\frac{1}{e^{w}}=\frac{1}{x}
\end{aligned}
$$

So

$$
\frac{d}{d x}(\ln (x))=\frac{1}{x}
$$

This is another formula worth memorizing.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

