$\frac{d}{d x} a^{x} ?$
We now want to learn to differentiate any exponential a^{x}. There are two roughly equivalent methods we can use:

Method 1: Convert a^{x} to something with base e and use the chain rule.
Because $\ln x$ is the inverse function to e^{x} we can rewrite a as $e^{\ln (a)}$. Thus:

$$
a^{x}=\left(e^{\ln (a)}\right)^{x}=e^{x \ln (a)}
$$

That looks like it might be tricky to differentiate. Let's work up to it:

$$
\begin{aligned}
\frac{d}{d x} e^{x} & =e^{x} \\
\frac{d}{d x} e^{3 x} & =3 e^{3 x} \quad \text { (by the chain rule) }
\end{aligned}
$$

Remember, $\ln (a)$ is just a constant like 3 , not a variable. Therefore:

$$
\begin{aligned}
& \frac{d}{d x} e^{(\ln a) x}=(\ln a) e^{(\ln a) x} \\
& \text { or } \\
& \frac{d}{d x} a^{x}=(\ln a) a^{x}
\end{aligned}
$$

This is a common type of calculation; you should practice it until you are comfortable with it. You may either memorize formulas for $\frac{d}{d x} e^{k x}$ and $\frac{d}{d x} x^{x}$ or re-derive them every time you need them.

Recall that $\frac{d}{d x} a^{x}=M(a) \cdot a^{x}$. So finally we know the value of $M(a)$:

$$
M(a)=\ln (a)
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

