$\frac{d}{d x} a^{x}$, part 2
We're learning to differentiate any exponential a^{x}. This is the second of two possible methods.

Method 2: Logarithmic differentiation

It turns out that sometimes it is hard to differentiate a function u and easier to differentiate $\ln u$ (for example, $u=e^{x^{2}+6}$.) We'd like to be able to use $\frac{d}{d x} \ln u$ to find $\frac{d}{d x} u$.

The chain rule tells us that $\frac{d}{d x} \ln u=\frac{d \ln u}{d u} \frac{d u}{d x}$, and we know that $\frac{d}{d u} \ln u=$ $\frac{1}{u} \frac{d u}{d x}$, so

$$
(\ln u)^{\prime}=u^{\prime} / u .
$$

How does this help us compute $\frac{d}{d x} a^{x}$?

$$
\begin{aligned}
u & =a^{x} \\
\ln u & =\ln \left(a^{x}\right) \\
\ln u & =x \ln a
\end{aligned}
$$

This is pretty easy to differentiate because $\ln a$ is a constant:

$$
(\ln u)^{\prime}=\ln a .
$$

Since $(\ln u)^{\prime}=u^{\prime} / u, u^{\prime}=u(\ln u)^{\prime}$. So $\frac{d}{d x} a^{x}=a^{x} \ln a=(\ln a) a^{x}$.
This uses the same arithmetic as the first method, but we don't have to convert to base e.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

