$$\frac{d}{dx}a^x$$
, part 2

We're learning to differentiate any exponential a^x . This is the second of two possible methods.

Method 2: Logarithmic differentiation

It turns out that sometimes it is hard to differentiate a function u and easier to differentiate $\ln u$ (for example, $u = e^{x^2+6}$.) We'd like to be able to use $\frac{d}{dx} \ln u$ to find $\frac{d}{dx}u$.

The chain rule tells us that $\frac{d}{dx} \ln u = \frac{d \ln u}{du} \frac{du}{dx}$, and we know that $\frac{d}{du} \ln u = \frac{1}{u} \frac{du}{dx}$, so

$$(\ln u)' = u'/u.$$

How does this help us compute $\frac{d}{dx}a^x$?

$$u = a^{x}$$
$$\ln u = \ln(a^{x})$$
$$\ln u = x \ln a$$

This is pretty easy to differentiate because $\ln a$ is a constant:

$$(\ln u)' = \ln a$$

Since $(\ln u)' = u'/u$, $u' = u(\ln u)'$. So $\frac{d}{dx}a^x = a^x \ln a = (\ln a)a^x$. This uses the same arithmetic as the first method, but we don't have to convert to base e.

MIT OpenCourseWare http://ocw.mit.edu

18.01SC Single Variable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.