Linear Approximation to $\ln x$ at $x=1$
If you have a curve $y=f(x)$, it is approximately the same as its tangent line $y=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$.

Figure 1: Tangent as a linear approximation to a curve
The tangent line approximates $f(x)$. It gives a good approximation near the tangent point x_{0}. As you move away from x_{0}, however, the approximation grows less accurate.

$$
f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

Example 1 Let $f(x)=\ln x$. Then $f^{\prime}(x)=\frac{1}{x}$. We'll use the base point $x_{0}=1$ because we can easily evaluate $\ln 1=0$. Note also that $f^{\prime}\left(x_{0}\right)=\frac{1}{1}=1$.

Then the formula for linear approximation tells us that:

$$
\begin{aligned}
f(x) & \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \\
\ln x & \approx \ln (1)+1(x-1) \\
\ln x & \approx 0+(x-1) \\
\ln x & \approx(x-1)
\end{aligned}
$$

Graph the curve $y=\ln x$ and the line $y=x-1$. You'll see that the two graphs are very close together when $x=x_{0}=1$. You'll also see that they're only near each other when x is near 1 .

The point of linear approximation is that the curve (in this case $y=\ln x$) is approximately the same as the tangent line $(y=x-1)$ when x is close to the base point x_{0}.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

